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Preface

This volume is a compilation of those presentations of the Fourth Goddard Conference on

Mass Storage Systems and Technologies for which manuscripts or viewgraphs were
received in time for publication. The Mass Storage community, as in the past, has shown
enthusiasm for the Conference, as witnessed by the large number of excellent papers we
have received. We are planning to bring out, on CD-ROM, the panel discussions and the
after-dinner speech some time after the Conference.

The IEEE Mass Storage Systems Reference Model Version 5, on which the final vote was
taken in July, 1994, will provide the framework for the definition of interfaces and
standards. It is to be hoped that, as this activity is completed, it will result in the creation
of interoperable software and hardware components from multiple vendors, thus affording
users a truly wide selection of products with which both large and small archives can be
built. 1994 also saw the definition of the architecture of the NASA Earth Observing
System Data and Information System (EOSDIS). It embraces a federated design with
autonomous, cooperating, systems which are distributed, both geographically and
logically, and will be based, to a large extent, on COTS products. Unfortunately, most
such products either do not exist today, or have not reached the required level of maturity.
The standardization activities of the IEEE SSS Working Group should provide the basis
and impetus for the creation of interoperable products for which the markets are emerging.

On a sad note, we regretfully report the passing away of three distinguished colleagues
who had participated in previous mass storage conferences. We extend our condolences
and sympathies to the families of:

John Corcoran, Ampex
L. Harris Robinson, Datatape
W. Cliff Brown, NASA Goddard Space Flight Center

In keeping with tradition, this year's Conference provides talks and presentations on:

• New storage technology from IBM, Quantum, Exabyte, Storage Technology and
Primelink Technologies

• Stability of recorded media
• Performance studies

• Storage systems solutions
• The national information infrastructure, the Infobahn

• The future for storage technology
• Lessons learned from various projects
• The requirements of various agencies

The editors are grateful to:

Mr Jean-Jacques Bedet, Hughes STX Corporation
Mr John H Berbert, NASA/GSFC
Mr Jimmy F Berry, National Security Agency
Mr William Callicott, recently retired from NOAA
Dr Samuel Coleman, Lawrence Livermore Laboratory
Mr Ray Cook, Community Management Staff
Prof Charles Dollar, University of British Columbia
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Ms Fynnette Eaton, National Archives and Records Administration
Mr Bernard O'Lear, National Center for Atmospheric Research

Dr Terry Pratt, former Director of CESDIS/USRA
Dr Sanjay Ranade, Infotech SA
Mr Bruce Rosen, NIST

Mr Don Sawyer, NASA/GSFC

who, as members of the Program Committee, worked diligently to make this Conference a
success.

We also offer our thanks to:

Jorge Scientific Corporation, for logistics support; the staff at the University of
Maryland Conference Center for the excellent conference facilities; and Len Blasso and
Media Specialist Associates for the production and camera-ready preparation of this

publication.

P C Hariharan

Systems Engineering & Security, Inc

Ben Kobler

Code 505, NASA Goddard Space Flight Center
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Abstract

As the cost of data storage continues to decline (currently about one-millionth of its cost four
decades ago) entirely new application areas become economically feasible. Many of these
new areas involve the extraordinarily high data rates and universal connectivity soon to be

provided by the National Information Infrastructure (Nil).

The commonly held belief is that the main driver for the Nil will be entertainment
applications. We believe that entertainment applications as currently touted--multi-media, 500
video channels, video-on-demand, etc.--will play an important but far from dominant role in
the development of the Nil and its data storage components. The most pervasively effective
drivers will be medical applications such as telemedicine and remote diagnosis, education and
environmental monitoring. These applications have a significant funding base and offer a
clearly perceived opportunity to improve the nation's standard of living.

The NiI's wideband connectivity both nationwide and worldwide requires a broad spectrum
of data storage devices with a wide-range of performance capabilities. These storage centers
will be dispersed throughout the system. Magnetic recording devices will fill the vast majority
of these new data storage requirements for at least the rest of this century.

The storage needs of various application areas and their respective market sizes will be
explored. The comparative performance of various magnetic technologies and competitive
alternative storage systems will be discussed.

OVERVIEW

Evolving local and wide-area networks are opening and supporting increasingly wider
interoperation and data sharing. A number of these architectures also support real-time inter-
operable applications. Examples include on-line interactive games played over the Internet.



NewcommercialventuresaresubjectingInternetfacilitiesto increasingnumbersof userswith
awidevarietyof knowledgeandskill levels. In addition,certainforthcomingInternet-based
offerings(e.g.Delphi) will routinelyuse"agents" to traverse the Internet. These "agents" will
be able to call up remote resources that can be aggregated to produce and deliver the desired

result transparently as a "single" transaction.

Often times, valuable data artifacts resulting from or derived during these "aggregated" agent-

driven operations are left at remote nodes for periods of time transcending the life of the
transaction itself. These may create problems for both data owners and site operators where
the data resides. Site operators will need to flush out such data from their storage devices
from time to time, causing potential losses, without recourse, to the data owners.

To some degree, this same problem is already occurring at an increasing rate on smaller, local
domains. Entelprise-wide networking that supports interoperable desktop computing often
exhibits a potential soft underbelly of potential data loss. This is because there is no
consistent nor convenient way to back-up widely dispersed data.

While there are currently a number of initiatives to develop and refine data-compacting
interoperability models, there are none that we are aware of that are addressing back-up of
widely dispersed data often typified by incompatible formats and inconsistent access
mechanisms.

As much higher data rate networks such as the Global Information Infrastructure (GII) are
developed that operate at speeds that are expected to approach a gigabit/second, the problems
outlined above become intractable with current storage technology and system architecture. In
order for such networks to become consistently useful and fulfill the promise of universal
access to all, requires that dispersed data, located at nodes anywhere in the world be
seamlessly available.

Traditional Model Traditional Model
Information Systems Bodies

Telco Bodies

New Model

Teleo Bodice Model Information

Systems Bodies

Figure 1. The $tsndsrds-Msking Univene

_M.Rulkowskl
copyright 1994
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This paper is a "first step" toward defining and formalizing a nuniversal" storage and retention
model. We hope that this will encourage dialogue regarding the broad issues of the
requirements of a truly user-friendly network, and to encourage the appropriate standards-
setting groups to become actively involved. International standards setting is a convoluted
process as Figure 1 shows.

SOME RELEVANT DRIVERS

Considerable effort is being made on a number of fronts to deal with the entire area of
interoperability across dissimilar networks, user interfaces and underlying protocols. As
these developments become commercialized, they will have a profound effect on the nature
and structure of storage. Examples of the development efforts follow.

Most network management systems protocols and descriptive semantics, e.g. NMS (Novell),

Openview (HP), Netmanager (SUN), Landesk (INTEL), Netview (IBM) do not currently
interoperate across public network facilities such as the Internet, but they do operate across a
number of commercial local and wide-area networks. Work is going on to provide upgrades
that will soon enable certain user-specific backup and maintenance functions across
heterogeneous networks.

Developments such as Microsoft "Windows '95" are expected to provide universal user
interfaces including X-Windows along with the simultaneous support of multiple network
transport mechanisms (e.g. TCP/IP, NetBIOS, netBEUI,...).

There are a number of applications program initiatives that will vie to become a "standard,"
and will enable application program modules written in one language to interoperate to some
degree with programs written using one or more modules written in as many languages.
These could, for example, share run-time resources in a single memory image; they could be
segmented--running in separate memory images on different machines; or they might be
distributed system components implemented by a number of programs on many machines. All
of these implementations would appear seamless to the user; in fact, users may not know
which were implemented and stored locally or at a remote node. As a consequence, slow or
unreliable network transport mechanisms, inadequate long-term storage facilities located at
network nodes, or missing software/data modules removed because of conflicting space
requirements will increase and exacerbate real and perceived problems. Of course, increasing
the number of interoperable components or modules expected by the user to be immediately
available, will further increase the demand for high-performance storage.

BACKUP ISSUES

The above considerations lead to a number of data backup issues. As an example, consider
the implementation of a flexible communication network backup facility that supports large
block transfers of variable size and that functions without impacting the network's perceived
performance by its on-line users. This is particularly important for digital video applications
where even short time delays are intolerable.

In summary, because of this and myriad other issues, the overall storage architecture requires
logical data space management so that it appears physically unbounded--regardless of the
nature of the storage devices or their network topology. That is, object boundaries span
storage hierarchies and media groupings. Consistent appearing data output formats are
required so that the presentations are independent of origin data base, operational software and
transport and are fully controllable by the user.



In addition,"agent"specificationsandqualificationsmustbecodifiedastherearecompelling
reasonsto believethattheseagentswill beusedto handleeventlog monitoring, billing (for
examplewhenthenetworkis usedto distributeintellectualproperty),reportingandinternal
datamigrationpathwaycontrol.

THE HIGH-SPEED NETWORK

Called the National Information Infrastructure in the United States, and the GII elsewhere, the

vision is to have a "fat pipe" with Terabits/second bandwidth connecting major word centers

by the next millennium. Currently, single-mode fiber-optic cables span the Atlantic and
Pacific and operate at hundreds of megabits/second speeds. Terabytes of data per day will be
traveling on this network and will require store-and-forward and destination node storage.
Storage periods required will range from milliseconds to days.

Currently, Broadband Integrated Services Digital Network (BISDN), using the Synchronous
Optical Network (SONET) physical layer protocol (SONET 0(2-3 operates at 155Mb/sec.)
appears closest to commercialization, but requires three technological advances: in access,
switching and storage.

In the area of storage, teleconferencing and multimedia applications such as MOSAIC can be
accommodated on ISDN using commercialized bandwidth compression schemes. The storage
requirements for applications such as medical image record transfer, where compression may
not be acceptable to the profession, and for high-definition television are almost
overwhelming.

For example, using the Qualcomm HDTV compression algorithm that provides 48:1 intra-
frame compression, a full-length movie requires about 50 megabytes of storage. The average
video store may have 10,000 titles in stock. To duplicate this on the server requires about 500
Terabytes of storage. These titles while not being required to be on one server, must be
accessible under the same naming conventions, using consistent accessing and transfer
methods, as if they were co-resident. Conventions and software required to meet these types

of requirements are not yet available.

Missing or ill-defined technologies are not the only problems that must be faced. The
economics of "video-on-demand N (VOD) is not comforting. The top one percent of
Blockbuster customers spend $350/year. The average is about $50/year. Historically,

citizens have spent a relatively fixed percentage of their income on entertainment--about 5% of
their net after taxes; and this includes travel, restaurant meals and the like. It is questionable

if, with currently available technology, there is a profitable business in downloading movies.
The future availability of advanced, lower cost, faster storage means may well determine the
fate of video on demand.

Medical image transmission and other telemedicine components are not yet inhibited by the
same cost constraints as VOD. The pictures, which range from X-rays to magnetic-resonance
images and sonograms, are sent without compression at relatively high cost because the

medical profession (not to mention its regulators and the legal profession) are not yet willing
to accept images reconstructed from image data that had been compressed using Nlossy"
compression algorithms--even though it can be shown that trained observers can rarely
distinguish between the original images and those that have been compressed. Regardless of
absolute cost, the value of using this technology to provide expert diagnosis to remote and
rural areas cannot be overstated. Additionly, telemedicine using actual, high-resolution video
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imagesprovidestheopportunity to performalmostreal-timeconsultationandcooperative
surgicalproceduresacrossthenetwork.

America's schoolsareslowly becomingconnectedto eachotherand to world-wide data
bases.While eachinstitution'snetworkusage,evenif in multimediaformat,will not put a
significantdemandon thenetwork;thecontemporaneousdemandbymanythousandsof users
will. A significantincreasein responsetimewhensurfingthenetworkfor informationusing,
for exampleMosaic,will tendto discouragethe studentsfrom using of the network's vast
resources.

THE FUTURE OF STORAGE FOR THE HIGH-SPEED NETWORK

Certainly for the rest of this century, magnetic storage will dominate. The storage density
continues to increase at the four decade-long historic rate of doubling every 2.5 years. In
fact, this rate-of-change has recently increased. The per-bit cost of magnetic storage has
gone down by a factor of over a million during the same time period. The retail price of
disk storage is now roughly 40 cents/megabyte.

The always-increasing I/O problem (the mismatch between computational speed and
memory access) is constantly being addressed by memory suppliers. The development of
RAID (redundant array of inexpensive drives) disk technology and stripe-based tape
storage provide performance and reliability improvements. Massive RAID systems now
being developed are currently limited by the speed of silicon technology.

The usual hierarchy of storage will continue to prevail with the ultra-high speed cache
requirements being fulfilled by solid-state memory. Massive caching is an economic issue
because the cost of such memory is prohibitive for high data rate network applications.
Thus, extensive effort is being devoted to refining and improving holographic storage
technologies. Many researchers expect these to be commercialized by the end of the
century and will combine the speed performance of RAM storage with the low-cost and
capacity of magnetic-based systems. A particular attractiveness is the lack of moving parts
and storage densities in the range of terabytes/cc.
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Introduction

The NASA EOS Data and Information System (EOSDIS) Core System (ECS) will
contain one of the largest data management systems ever built - the ECS Science and
Data Processing System (SDPS). SDPS is designed to support long term Global Change
Research by acquiring, producing, and storing earth science data, and by providing
efficient means for accessing and manipulating that data. The first two releases of SDPS,
Release A and Release B, will be operational in 1997 and 1998, respectively. Release B
will be deployed at eight Distributed Active Archiving Centers (DAACs). Individual
DAACs will archive different collections of earth science data, and will vary in archive
capacity. The storage and management of these data collections is the responsibility of
the SDPS Data Server subsystem. It is anticipated that by the year 2001, the Data Server
subsystem at the Goddard DAAC must support a near-line data storage capacity of one
petabyte.

The development of SDPS is a system integration effort in which COTS products will be
used in favor of custom components in every possible way. Some software and hardware
capabilities required to meet ECS data volume and storage management requirements
beyond 1999 are not yet supported by available COTS products. The ECS project will
not undertake major custom development efforts to provide these capabilities. Instead,
SDPS and its Data Server subsystem are designed to support initial implementations with
current products, and provide an evolutionary framework that facilitates the introduction
of advanced COTS products as they become available.

This paper provides a high-level description of the Data Server subsystem design from a
COTS integration standpoint, and discusses some of the major issues driving the design.
The paper focuses on features of the design that will make the system scalable and
adaptable to changing technologies.
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SDPS Overview

SDPS [1] will support the services required to ingest, process, archive, manage, and
access science data and related information from the entire EOSDIS. A typical DAAC
will consist of the following SDPS components :

An Ingest subsystem for acquiring all data from EOS instruments, NASA Probe
flight missions, and other remotely-sensed data.

A Data Processing subsystem for the generation of science data products from
ingested instrument data, and from previously stored data products. The Data Processing
subsystem executes hundreds of science algorithms which generate hundreds of gigabytes
of science data on a daily basis. The subsystem generates the bulk of the data stored into
the archive, and accounts for a large portion of the retrieval demand for archived data.

A Planning subsystem for planning the execution of data processing tasks.

A Data Management subsystem that provides functions for locating and accessing
data distributed among ECS DAACs and other data systems with which ECS

interoperates.

A Data Server subsystem with a capacity (at the largest DAACs) to archive, retrieve,
and distribute hundreds of gigabytes per day.

An Interoperability subsystem that advertises ECS data and services to ECS clients.

A Service-Oriented System

The design of SDPS is based on a service-oriented approach to data search and access.
Predecessor systems have employed a 'product-ordering Happroach that derived from the
file-oriented retrieval mechanisms provided by conventional hierarchical storage systems.
The contemporary science user requires sophisticated search and access methods which
can locate and manipulate required data using a variety of search and processing criteria.
Normally, the science user will only be interested in a fragment of a data product.

Subsetting and subsampling operations will be applied to ECS data after it is retrieved
and before it is distributed to the user. Ideally, all of the data would be stored inside of a
data base system that could provide advanced search, access, and data manipulation
capabilities on a petabyte of data in tertiary storage.
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Theservice-basedapproachadoptedby SDPSis intendedto supporttheeventual
introductionof advancedmass-storagedatabasetechnologies when they become
available. The approach has the following features:

It provides the science user a set of services on earth science data, instead of
providing copies of canned data products. The user issues service requests which
typically involve the retrieval of stored data followed by one or more processing steps on
that data. In effect, the user accesses data Nobjects N instead of data products.

It associates data and services according to science "views" of the data; usually a

given view corresponds to a science discipline (e,g. Atmospheric Dynamics).

It provides a logical "Data Server" to provide each discipline-oriented view of the
data. Each data server logically associates related data even though the data may be
stored on a variety of physical devices and managed by different data management
software. The science user accesses and manipulates the data as if it were stored and

managed in the same manner.

It supports the experimental development and introduction of advanced user
interfaces and advanced data management methods by providing application program
interfaces to supported services.

The Data Server Subsystem

The SDPS Data Server subsystem provides the resources and services required for the
storage, management, and access of the ECS science data collections. Figure 1 illustrates
the subsystem and its relationship to the other parts of SDPS. The Data Server
subsystem services data storage requests from the Ingest and Data Processing
subsystems, and provides data search and retrieval services to ECS users and to the Data
Processing subsystem. The subsystem manages the distribution of requested data to both
hard media and to network clients.

Science users access the data and services provided by the Data Server subsystem by

issuing service requests, either to the subsystem directly, or through the distributed access
facilities of the Data Management subsystem. Users can request that processing (e.g.

subsetting and subsampling) be performed on archived data products and have the result,
or "result set", distributed to them. Additionally, the users can request processing on the
result sets produced by previous service requests. The source data products for these
operations can be many gigabytes in size. The capability to provide users the capability
to perform processing at the archive site is essential because the size of the input data
products is so large and the bandwidth of the distribution network is limited.

Physically, the Data Server subsystem is composed of the following major components:
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Access components - These support user/client access to data and services; they
manage client sessions and manage the execution of service requests; and they advertise
the services performed by the subsystem.

Data Repository - This component provides storage servers for the storage,
searching, and retrieving of data. A storage server can be any software/hardware
subsystem that stores and retrieves data on demand.

Distribution - This component supports the distribution of ECS data to users via
networks and through the generation of hard media..

Working Storage - This component manages the resources required for the temporary
storage and buffering of ECS data.

The Access Component

The Access component supports client access to ECS data and services. The client may
be an interactive application system that is controlled directly by the user, an intermediary
process provided by the SDPS Data Management subsystem, or a client belonging to the
Data Processing subsystem. The client issues service requests for data and services on
behalf of the user; the Access component manages the execution of the requests and
directs them to appropriate Data Server or Data Processing subsystem components.
Storage and retrieval requests are directed to storage servers (see Figure 2). Processing
requests are executed directly by the Access component, or are directed to the Data
Processing subsystem.

From the client perspective, the client is not interacting with the Access component or the
storage servers, but is accessing a Data Server dedicated to a set of data and services that
apply to a particular science discipline. The Access component can implement the logical
functionality and services of multiple Data Servers. Data logically associated with a
single Data Server may be physically stored across multiple storage servers.

A major function of the Access component is to insulate the client from the mechanisms
used to store and retrieve data. In retrieval operations, the user specifies the data he
wants and generates a service request containing a unique ECS Universal Reference (UR)
to the data. The format of the UR is independent of the storage server and its underlying
storage technology. The Access component uses the UR to determine which storage
server contains the required data. The Access component then obtains the required data

by directing the request, in a standard format, to the storage server.

Data Repository

The Data Repository component provides the storage servers for the storage, searching,
and retrieving of data. A storage server provides permanent data storage and retrieval
services. It is composed of a hardware storage system and a COTS storage management
software system. The storage management software manages the hardware and data, and

11
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processes service requests. Examples of storage servers include DBMS servers and
tertiary storage systems managed by COTS File Storage Management products.

The vast majority of ECS data will be stored using technologies which support high
storage densities at the lowest cost. At this writing the ECS project has not selected the
storage systems for any of its releases. However, this paper assumes that one or more
robotic tape libraries will be employed in the storage servers that store the bulk of ECS
data.

The COTS software packages available for managing storage servers use different
mechanisms for identifying and accessing data. Each storage server will have a custom
software "wrappe rH to translate standard service requests, from the Access component,
into service requests that are compatible with the underlying COTS storage management
software. Part of the translation process will necessitate the translation of the ECS UR
into a product-dependent data set (or file) identifier. A storage server could be replaced
with another one based on different COTS products without affecting the ECS data
identification scheme, provided a translation interface is built for the new server.

The Access and Data Repository components support the use of multiple and
heterogeneous storage servers. This design reduces dependence on a single storage
technology. The design allows the use of a mix of storage technologies tailored to the
variety of data that must be stored. It supports system evolution by permitting new
technologies to be introduced and old ones replaced, in a gradual manner. Finally, it
supports the expansion of the storage system through the addition of storage servers.

WorkingStorage

The Working Storage component provides high-performance disk storage, i.e. "working
storage," for the temporary storage of ECS data. Specifically, it (1) stores files retrieved
from Storage servers, (2) stores the result sets generated by the Access component and
the Data Processing subsystem, and (3) buffers data to be inserted into the storage
servers. Working storage roughly corresponds to the secondary storage component in a
conventional hierarchical storage system.

One of the uses of working storage is to support interactive sessions with users. During
these sessions, result sets are generated by the execution of service requests and are

placed in working storage. The result sets may be browsed, processed further, or
distributed as directed by a subsequent service request. The Access component must be
able to retain result sets in working storage until the session with the user is terminated.

The Data Processing subsystem requires a large portion of working storage in order to
support the execution of hundreds of science algorithms daily. The amount of working
storage required to support the Data Processing subsystem is a major cost driver for the
development of SDPS. The execution of a single science algorithm may process multiple
gigabytes of input data contained in multiple files, and may generate many gigabytes of

output data.
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To asignificantdegree,theoutputof onealgorithmis usedasinputfor theexecutionof
anotheralgorithmwithin a fewminutesor hours.Ultimately,mostof thealgorithm
outputwill bearchived.Theretrieval loadon thearchivecanbesignificantlyreducedif
algorithmoutputcanberetainedin workingstoragelongenoughto beusedasinputby
algorithmsthatrequirethatoutput. Theamountof workingstoragerequiredto support
processingdependson therequiredretentionintervalsfor algorithmoutputs.Algorithms
arescheduledin orderto minimizetheseintervals. Theefficientmanagementof working
storagerequiresthattheDataProcessingsubsystemcontrolworkingstoragefile retention
in coordination with algorithm scheduling.

Mass-Storage I/0 Management

The greatest design challenge for the Data Server subsystem is the management of the
massive I/O (multiple terabytes per day) between the mass-storage library and the Data
Processing subsystem. The Data Server design approaches this problem by supporting
the scaling of I/O capacity and the intelligent management of working storage.

The conventional approach to managing multi-terabyte mass storage is to use a COTS
File Storage Management System (FSMS) hosted on a single supercomputer. All I/O

must pass through the FSMS host. Scalability is achieved under this approach in a
"vertical" fashion by expanding the power of the host computer. This approach will not
meet long-term ECS requirements for multi-terabyte daily I/O throughput rates. Ideally,
I/O to and from the media drives in the mass-storage archive would be conducted from
and to working storage, along parallel I/O paths which bypass the FSMS host. Current
FSMS products do not support all of the capabilities required to implement this I/O
architecture, nor do they meet ECS requirements for the application control of working
storage. The ECS project is anticipating the development of FSMS products that will
meet these requirements.

The ideal FSMS product would have the following major features:

A volume management capability for controlling a variety of storage devices,
including robotics.

A file management capability that formats and organizes files on tertiary media.

A capability to automatically monitor the integrity of the data in tertiary storage and
monitor condition of the media.

The capability to direct I/O between (1) the media drives and working storage and (2)
between the media drives and a specified computer, without traversing the FSMS host.

An application interface to working storage that allows the application to control the

staging and retention of files in working storage.
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TheECSnear-term approach to scalability is to increase volume and throughput capacity
"horizontally" by replicating storage servers supported by processors of moderate size.
The current COTS-based design is intended to support the initial Releases of ECS and to

support the introduction of high-performance I/O technologies later on.

Figure 3 illustrates a model for the initial implementation of a mass-storage storage server
that (1) could be implemented with available COTS products, (2) could be evolved to
support advanced I/O and storage management capabilities, and (3) provides for
application control of working storage. In the model, a COTS FSMS is used to manage
the files in the mass-storage archive, control the archive hardware, and move files
between a mass-storage archive and working storage. Working storage is implemented
by a disk array managed by a COTS network-accessible file system.

The FSMS and the network-accessible file system are separate products that interact
across a standard UNIX file system interface. The separation of these capabilities is
necessary in order to provide ECS flexibility in the selection and replacement of
corresponding COTS technologies.

An essential feature of the model is that the management of files in working storage can

be controlled by components external to the FSMS. This allows the Access component
and the Data Processing subsystem to control the retention of files in working storage and
allows the Data Processing subsystem to direct the staging of files prior to the execution
of science algorithms. External components exercise this control through an HECS file
manager". The ECS file manager does the following:

Accepts external requests for staging files, for retaining and releasing files from
working storage, and for storing files in the archive.

Keeps track of which files are in working storage and assigns a retention interval to
each file.

Directs the FSMS to migrate files between the archive and working storage, in

response to external requests.

Conclusion

The Data Server subsystem design is constrained by the availability of applicable COTS
technologies and the requirement to evolve to accommodate increasing system loads and
advances in mass-storage technology. The efficient management of its storage resources
require that the application have control over file caching mechanisms and over the
movement of data between storage resources. Required support for multi-terabyte daily
I/O rates necessitate the ultimate use of advanced I/O architectures. Currently no product

(or family of products) provides a comprehensive approach to these issues. The current
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COTS-based design is intended to support the initial releases of ECS with a combination
of COTS products, and will support the introduction of high-performance IIO
technologies in later phases of the project.
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Abstract

We describe the architecture, implementation, use, and potential use of a scalable,

high-performance, distributed-parallel data storage system developed in the ARPA funded

MAGIC gigabit testbed 1. A collection of wide area distributed disk servers operate in par-

allel to provide logical block level access to large data sets. Operated primarily as a net-

work-based cache, the architecture supports cooperation among independently owned

resources to provide fast, large-scale, on-demand storage to support data handling, simula-

tion, and computation.

1.0 Introduction

We have designed and implemented a wide area network-based, distributed-parallel stor-

age system ("DPSS") as part of an ARPA funded collaboration known as the MAGIC

gigabit testbed [1], and as part of DOE's high speed distributed computing program. This

technology has been quite successful in the MAGIC environment, and it has the potential

for enhancing data rich environments like EOSDIS (see [2] and Figure 7). The DPSS pro-

vides an economical, high performance, widely distributed, and highly scalable architec-

ture for caching large amounts of data that can potentially be used by many different users

and processes within EOSDIS. Our current implementation of the DPSS technology is

called the Image Server System ("ISS"), and is optimized for providing access to large,

image-like, read-mostly data sets such as those found in the environment of the EROS

1. The work described in this paper is supported by ARPA, Computer Systems Technology Office
(http://ftp.arpa.mil/ResearchAreas.html) and the U. S. Dept. of Energy, Office of Energy Research, Office of
Scientific Computing (http://wwwosc.er.doe.gov/), under contract DE-AC03-76SF00098 with the Univer-
sity of California. Reference herein to any specific commercial product, etc., does not imply its endorsement
by the United States Government or the University of California. Likewise the views and opinions of
authors expressed herein. Authors: wejohnston@lbl.gov (Lawrence Berkeley Laboratory, mail stop:
B50B-2239, Berkeley, CA, 94720, ph: 510-486-5014, fax: 510-486-6363, http://www-itg.lbl.gov), tier-
ney@george.lbl.gov, feuquay@sunh.cr.usgs.gov. Report no. LBL-36680.
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Data Center _DC) as the Land Processes DAAC. In the MAGIC testbed the ISS is dis-

tributed across several sites separated by more than 1000 Km of high speed IP over ATM

network and stores very high resolution images of several geographic areas. The "TerraVi-

sion" terrain visualization application uses the ISS to let a user to explore / navigate a

"real" landscape represented in 3D by ortho-corrected, one meter images and digital ele-

vation models (see [3]). TerraVision requests from the ISS, in real-time, the sub-images

("tiles") needed to produce a view of the landscape. Typical use requires aggregated data

streams of from 100 Mbits/sec to 400 Mbits/sec that are supplied from several servers on

the network. Even in the current prototype system the ISS is easily able to supply these

data rates.

The ISS architecture is that of multiple network disk servers that are based on Unix work-

stations. The system coordinates multiple servers to aggregate high-bandwidth data

streams to network-based client application (e.g. TerraVision). Alternatively, many lower

data rate streams can be supplied to many applications simultaneously (in a "video server"

style of operation). The DPSS implementation uses an open systems, platform-indepen-

dent, software approach. High performance is achieved in two ways: First, the functional-

ity of the disk servers has been kept very simple - they are essentially "block" servers (a

block being a fixed size unit of data like an image tile). Second, image data sets are easily

partitioned over network distributed servers in such a way that ensures parallel operation

of many independent servers in order to supply a high bandwidth data stream to an appli-
cation.

The DPSS technology potentially fits into the EOSDIS environment in various ways.

First, there are several uses that supplement EOSDIS, and that do not require direct inte-

gration into existing EOSDIS systems: For example, the DPSS might be used for buffer-

ing data coming into DAACs (data archive sites) prior to archiving, and it might be used

as a large scale query results cache to support SCFs (data analysis sites). Second, DPSS

technology also has potential use within the EOSDIS system itself: It could provide a

mechanism at several points in the EOSDIS architecture for rapid reorganization of large

volumes of data, and it might be used as a cache for high speed in-line processing opera-
tions.

We will describe the implementation, performance, and uses of the current prototype

DPSS, including the operation of the ISS in the MAGIC testbed and its use in a regional

medical imaging experiment.

2.0 Background

Current workstation disk technology delivers about four Mbytes/s (32 Mbits/s) per drive,

a rate that has improved at about 7% each year since 1980 [4], and there is reason to

believe that it will be some time before a single disk is capable of delivering streams at the

rates needed for the applications mentioned. While RAID [4] and other parallel disk array

technologies can deliver higher throughput, they are still relatively expensive, and do not

scale well economically, especially in an environment of multiple network based users
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wherewe assumethat the sources of data, as well as the multiple users, will be widely dis-

tributed. Asynchronous Transfer Mode (ATM) networking technology, due to the architec-

ture of the SONET infrastructure that underlies large-scale, wide area ATM networks, will

provide the bandwidth that will enable the approach of using network-based distributed,

parallel data servers to provide high-speed, scalable storage systems. Data transport is pro-

vided by IP datagram services (UDP and RTP) and high performance versions of TCP (see

[5]).

The approach described here differs in many ways from RAID, and should not be con-

fused with it. RAID is a particular data strategy used to secure reliable data storage and

parallel disk operation. Our approach, while using parallel disks and servers, deliberately

imposes no particular layout strategy (which is free to be optimized on an application or

data structure basis), and is implemented entirely in software (though the data redundancy

idea of RAID might be usefully applied across servers to provide reliability in the face of

network problems).

3.0 System Architecture Overview

The Image Server System (ISS) is an implementation of a distributed-parallel data storage

architecture. It is essentially a "block" server that is distributed across a wide area network

and used to supply data to applications located anywhere in the network. Figure 1 illus-

trates the architecture. There is no inherent organization to the blocks; however, layout

strategies that maximize parallelism are clearly desirable. The data organization is deter-

mined by the application as a function of data structures and access patterns, and is imple-

mented during a data load process. When data structures and access patterns are well

understood then specific placement algorithms can be designed to optimize data place-

ment for maximum parallelism (e.g. see [6]). In other cases blocks can be scattered ran-

domly across the disks and servers (a strategy that can work surprisingly well). The usual

goal of the data organization is that data is declustered (dispersed in such a way that as

many system elements as possible can operate simultaneously to satisfy a given request)

across both disks and servers. This strategy allows a large collection of disks to seek in

parallel, and all servers to send the resulting data to the application in parallel, enabling

the ISS to perform as a high-speed image server.

The functional design strategy is to provide a high-speed "block" server, where a block is

a unit of data request and storage. The ISS essentially provides only one function - it

responds to requests for blocks. However, for greater efficiency and increased usability,

we have attempted to identify a limited set of functions that extend the core ISS function-

ality while allowing support for a range of applications. First, the blocks are "named." In

other words, the view from an application is that of a logical block server. Second, block

requests are in the form of lists that are taken by the ISS to be in priority order. Therefore

the ISS attempts (but does not guarantee) to return the higher priority blocks first. Third,

the application interface to the ISS provides the ability to ascertain certain configuration

parameters (e.g., disk server names, performance, disk configuration, etc.) in order to per-

mit parameterization of block placement strategy algorithms (for example, see [6]). Addi-
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tionally, the ISS is instrumented to permit monitoring of almost every aspect of its

functioning during operation. This monitoring functionality is designed to facilitate per-

formance tuning and network performance research. However, the information about indi-

vidual server performance characteristics provided as part of this monitoring can be used

by a client's data layout algorithm. Such performance information can facilitate a distribu-
tion of the data that better accounts for the differences between individual servers' demon-

strated capabilities regardless of the cause: disk hardware, OS, location in the network,

etc. Asymmetric server performance is accounted for in the image-tile placement algo-

rithm used to support the TerraVision application in MAGIC.

At the present state of development and experience, the ISS that we describe here is used

primarily as a large, fast, wide area network distributed "cache". Reliability with respect

to data corruption is provided only by the usual OS and disk mechanisms, and data deliv-

ery reliability of the overall system is a function of user-level strategies of data replication

and/or re-request and retransmission.

The data of interest (tens to hundreds of GBytes) is typically loaded onto the ISS from

archival tertiary storage, or written into the system from live data sources. Data layout

strategy is used when the organization of the data and the application use patterns are well

22



understood(aswith images).In thecaseof writing from live datasourcessomevariation
of a"round-robin" schemeoptimizesthespeedof writing to theISS.

Client Use

The client-side (application) use of the ISS is provided through a library-based API that

handles initialization (for example, an "open" of a data set requires discovering all of the

disk servers with which the application will have to communicate), and the basic block

request / receive interface. It is the responsibility of the client (or, more typically, its agent)

to maintain information about any higher-level organization of the data blocks, to main-

tain sufficient local buffering so that "smooth playout" requirements may be met locally,

and to run predictor algorithms that will pre-request blocks so that application response

time requirements can be met. The prediction algorithm enables pipelining the operation

of the disk servers, with the goal of overcoming the inherent latency of the disks. (See [7]

and [8]). None of this has to be explicitly visible to the user-level application, but some

agent in the client environment must deal with these issues because the ISS always oper-

ates on a best-effort basis: if it did not deliver a requested block in the expected time or

order, it was because it was not possible to do so. In fact, a typical mode of operation is

that pending block requests are flushed from the server read queues when they age more

than a few hundred milliseconds. The application routinely re-requests some fraction of

the data. This deliberate "overloading" of the disk servers ensures that they will be kept

busy looking for relevant blocks. This behavior is one aspect of the pipelining strategy on
the servers.

Name Server Functions

The primary function of the name server is to translate the logical block names used by the

applications into physical block names. Typical operation involves the application making

an initial request of the name server for a particular data set and getting back a list of serv-

ers that will be supplying data. After the "open" operation, priority ordered logical block

request lists are sent to the name server, which translates requests to physical block loca-

tions (disk server address, disk number, and disk block). The data is returned via the cli-

ent's direct connections to individual servers. The name server ("ISS Master") also does

housekeeping and monitoring functions, and these are described in [8]. One of the design

decisions was that the name server only do logical block name translation. All other

higher level information about the structure of the data (e.g., what list of blocks comprise

a file) are relegated to a "structure server" mechanism that can maintain as complex a view

of the data as is needed by the application (or even different views of the same data). We

have not attempted to standardize the structure server (different applications can have very

different ways of viewing their data), but several functions are provided by the name sev-
ers to assist the structure server.

Use of the DPSS approach for management of large data archives will be facilitated by the

ability to rapidly reconfigure the scope and organization of the storage. The extent of a

"unit of storage" (a logically associated collection of DPSS disk blocks) is only a function

of the name server. Multiple name servers of storage will, in the future, share, request, or
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relinquishserversvia cooperationamongthenameserversoperatedby differentorganiza-
tions. No reorganizationof the disk servers(internally or externally) is necessary.This
ability will facilitate "just-in-time" configurationof cachestoragefor a large dataset
resultingfrom a querythat, for example,extendsacrossseveralDAACs, or in buffering
largeincoming datasetsresulting from, for example,severalsourcesturning on at the
sametime.

Implementation

In our prototypeimplementations,thetypical ISS consistsof several(four - five) UNIX
workstations(e.g.SunSPARCStation,DEC Alpha, SGI Indigo, etc.),eachwith several
(four - six) fast-SCSIdisksonmultiple (two - three)SCSIhostadaptors.Eachworkstation
is alsoequippedwith an ATM networkinterface.An ISSconfigurationsuchasthis can
deliver anaggregateddatastreamto anapplicationat about400 Mbits/s (50 Mbytes/s)
using theserelatively low-cost,"off the shelf' componentsby exploiting the parallelism
provided by approximatelyfive servers,twenty disks, ten SCSI hostadaptors,and five
networkinterfaces.

The softwareimplementationis basedonUnix interprocesscommunicationmechanisms
andaPOSIX threadsprogrammingparadigm(see[9] and[10]).Thethreeprimaryoperat-
ing systems(Sun'sSolaris,DEC'sOSF,andSGI'sIRIX) all haveslightly differentimple-
mentationsof threads,but theyarecloseenoughthatmaintaininga singlesourceis not too
difficult.

The implementationsupportsa numberof transportstrategies,including TCP/IP and
UDP/IP. UDP does not guarantee reliable data delivery, and never retransmits. Lost data

are handled at the application level. This approach is appropriate when data has an age

determined value. That is, data not received by a certain time is no longer useful, and

therefore should not be retransmitted, as is true in certain visualization scenarios.

Prototypes of the ISS have been built and operated in the MAGIC network testbed. Other

papers on the ISS are [11], which focus on the major implementation issues, [7], which

focuses on the architecture and approach, as well as optimization strategies, and [12],

which focuses on ISS applications and ISS performance issues.

Performance

Scalability of capacity and performance are inherent in the architecture: the individual

servers are effectively completely independent of each other. The time spent locating

blocks is minimal, and in principle (and frequently in fact), many servers can be sending

blocks simultaneously to the application. In other words, the performance limits are typi-

cally at the client application. This architecture means that capacity and performance scale

by simply adding more disk servers anywhere in the network. (Obviously some limits

exist: network bandwidth will limit the aggregate throughput, if the number of servers

exceeds the number of blocks in a file then adding servers will not increase the through-
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put, etc.).Thestrategyof acentralizednameserverseemsto add very little overhead com-

pared to the time required to request and deliver blocks.

The current implementation of the servers is memory bandwidth limited, a situation com-

mon to almost all current workstation hardware architectures. Our implementation does no

user-space copies of the data, which means a total of three memory copies for most OS's:

disk to memory, and two copies to get to the network. The performance of the server then

is typically the memory copy speed divided by three (a metric that has held for all of the

six or eight platforms that we have tested. Table 1 shows performance measurements for

TABLE 1. ISS Disk Server Performance

System

Sun SS10-51

Sun SS 1000 (2 proc)

SGI Challenge L

Dec Alpha 3000/600

Max ATM LAN

ttcp

70 Mbits/sec

75 Mbits/sec

82 Mbits/sec

127 Mbits/sec

ttcp w/disk read

60 Mbits/sec

65 Mbits/sec

72 Mbits/sec

95 Mbits/sec

Max ISS speed

55 Mbits/sec

60 Mbits/sec

65 Mbits/sec

88 Mbits/sec

several platforms. "ttcp" is effectively a memory-to-network copy, and the ISS numbers

include the overhead for locating blocks and moving them from disk to network.

For more specific performance analysis of the current system, see [12].

4.0 Related Work

There are other research groups working on solving problems related to distributed stor-

age and fast multimedia data retrieval. For example, Ghandeharizadeh, Ramos, et al., at

USC are working on declustering methods for multimedia data [13], and Rowe, et al., at

UCB are working on a continuous media player based on the MPEG standard [14]. Simi-

lar problems are also being solved by the Massively-parallel And Real-time Storage

(MARS) project [15], which is similar to the ISS, but uses special purpose hardware such

as RAID disks and a custom ATM Port Interconnect Controller (APIC).

In some respects, the ISS resembles the Zebra network file system, developed by John H.

Hartman and John K. Ousterhout at the University of California, Berkeley [ 16]. However,

the ISS and the Zebra network file system differ in the fundamental nature of the tasks

they perform. Zebra is intended to provide traditional file system functionality, ensuring

the consistency and correctness of a file system whose contents are changing from

moment to moment. The ISS, on the other hand, tries to provide very high-speed,

high-throughput access to a relatively static set of data.

25



5.0 Applications

There are several target applications for the initial implementation of the ISS. These appli-

cations fall into two categories: image servers and multimedia / video file servers.

Image Server

The initial use of the ISS is to provide data to a terrain visualization application in the

MAGIC testbed. This application, known as TerraVision [17], allows a user to navigate

through and over a high resolution landscape represented by digital aerial images and ele-
vation models. TerraVision is of interest to the U.S. Army because of its ability to let a

commander "see" a battlefield environment. TerraVision is very different from a typical

"flight simulator"-like program in that it uses high-resolution aerial imagery for the visual-

ization instead of simulated terrain. TerraVision requires large amounts of data, transferred

at both bursty and steady rates. The ISS is used to supply image data at hundreds of

Mbits/s rates to TerraVision. No data compression is used with this application because

the bandwidth requirements are such that real-time decompression is not possible without

using special purpose hardware.

In the case of a large-image browsing application like TerraVision, the strategy for using

the ISS is straightforward: the image is tiled (broken into smaller, equal-sized pieces), and
the tiles are scattered across the disks and servers of the ISS. The order of tiles delivered to

the application is determined by the application predicting a "path" through the image

(landscape), and requesting the tiles needed to supply a view along the path. The actual

Tiled ottho

images of

landscape.

server 1 TerraVision

D2

network

Tiles intersected by the path of travel:

74, 64, 63, 53, 52, 42, 32, 33

Data placement algorithm results in mapping tiles

along path to several disks and servers.
/

tile _/ server and disk

74 _ SIDI
64 _ SID2
63 _ S2DI

53 _ $!D!
52 $2D2
42 _ SID2
32 _ S2DI

ISS server 2
D2

Servers and disks operate in parallel to supply tiles to the application.

Figure 2 ISS Parallel Data Access Strategy as Illustrated by the TerraVision
Application

delivery order is a function of how quickly a given server can read the tiles from disk and
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sendthem over the network.Tiles will be deliveredin roughly the requestedorder,but
small variationsfrom therequestedorderwill occur.Thesevariationsmustbeaccommo-
datedby buffering, or otherstrategies,in theclient application.

Figure2 showshow imagetiles neededby the TerraVisionapplicationare declustered
acrossseveraldisksandservers.Moredetailon this declusteringis providedbelow.

EachISSserveris independentlyconnectedto thenetwork,andeachsuppliesan indepen-
dentdatastreaminto andthroughthenetwork.Thesestreamsareformedintoasinglenet-
work flow by usingATM switchesto combinethe streamsfrom multiple medium-speed
links onto a single high-speedlink. This high-speedlink is ultimately connectedto a
high-speedinterfaceon thevisualizationplatform(client).On theclient, datais gathered
from buffers andprocessedinto the form neededto producetheuserview of the land-
scape.

This approachcouldsupplydatato anysortof large-imagebrowsingapplication,includ-
ing applications for displaying large aerial-photolandscapes,satellite images,X-ray
images,scanningmicroscopeimages,andsoforth.

Figure3 showshow thenetworkis usedto aggregateseveralmedium-speedstreamsinto
one high-speedstreamfor the imagebrowsingapplication.For theMAGIC TerraVision

Large Image Browsing Scenario (MAGIC TerraVision application)

ATM _ MAGIC
switch application

Figure 3 Use of the ISS for Single High-Bandwidth Application

application, the application host (an SGI Onyx) is using multiple OC-3 (155 Mbit/s) inter-

faces to achieve the bandwidth requirements necessary. These multiple interfaces will be

replaced by a single OC-12 (622 Mbit/s) interface when it becomes available.

In the MAGIC testbed (see Figure 4), the ISS has been run in several ATM WAN configu-

rations to drive several different applications, including TerraVision. The configurations

include placing ISS servers in Sioux Falls, South Dakota (EROS Data Center), Kansas

City, Kansas (Sprint), and Lawrence, Kansas (University of Kansas), and running the Ter-

raVision client at Fort Leavenworth, Kansas (U. S. Army's Battle Command Battle Lab).
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The ISS disk server and the TerraVision application are separated by several hundred kilo-

meters, the longest single link being about 700 kilometers.

Video Server

Examples of video server applications include video players, video editors, and multime-

dia document browsers. A video server might contain several types of stream-like data,

including conventional video, compressed video, variable time base video, multimedia

hypertext, interactive video, and others. Several users would typically be accessing the

same video data at the same time, but would be viewing different streams, and different

frames in the same stream. In this case the ISS and the network are effectively being used

to "reorder" segments (see Figure 5). This reordering affects many factors in an image

server system, including the layout of the data on disks. Commercial concerns such as

Time Warner and U.S. West are building large-scale commercial video servers such as the

Time Warner / Silicon Graphics video server [17]. Because of the relatively low cost and

ease of scalability of our approach, it may address a wider scale, as well as a greater diver-

sity, of data organization strategies so as to serve the needs of schools, research institu-
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Video File Server Scenario
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Figure 5 Use of the ISS to Supply Many Low-Bandwidth Streams

tions, and hospitals for video-image servers in support of various educational

research-oriented digital libraries.

Health Care Application 2

and

An example of a medical application where we will be using this technology is the collec-

tion and playback of angiography images. Procedures used to restore coronary blood flow,

though clinically effective, are expensive and have contributed significantly to the rising

cost of medical care. To minimize the cost of such procedures, medical care providers are

beginning to concentrate these services in a few high-volume tertiary care centers. Patients

are usually referred to these centers by cardiologists at their home facilities; the centers

then must communicate the results back to the local cardiologists as soon as possible after

the procedure.

The advantages of providing specialized services at distant tertiary centers are signifi-

cantly reduced if the medical information obtained during the procedure is not delivered

rapidly and accurately to the treating physician in the patient's home facility. The delivery

systems currently used to transfer patient information between facilities include interoffice

mail, U.S. Mail, fax machine, telephone, and courier. Often these systems are inadequate

and potentially could introduce delays in patient care.

With an ATM network and a high-speed image file server, still image and video sequences

can be collected from the imaging systems. These images are sent through an ATM net-

work to storage and analysis systems, as well as directly to the clinic sites. Thus, data can

be collected and stored for later use, data can be delivered live from the imaging device to

2. This work is being done in conjunction with Dr. Joseph Terdiman, Kaiser Permanente Division of
Research, and Dr. Robert Lundstrum, San Francisco Kaiser Hospital Cardiac Catheterization Laboratory.

The implementation is being done with the support of a Pacific Bell CalREN grant (ATM network access),
and in collaboration with Sun Microsystems and Phillips Palo Alto Research Laboratory. See

http://www-itg.lbl.gov/Kaiser/home-page.html
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remoteclinics in real-time,or thesedataflows canall bedonesimultaneously.Whether
the ISS serversare local or distributedaroundthe network is entirely a function of the
optimal logistics.Thereareargumentsin regionalhealthcareinformationsystemsfor cen-
tralizedstoragefacilities, eventhoughthearchitectureis thatof adistributedsystem.See,
for example,[ 18].

EOS-DIS

There are several possible uses of the DPSS technology within the EOSDIS architecture
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Figure 6 Possible Uses of DPSS Within the EOSDIS Architecture

as a new element providing a shared, high speed cache (see Figure 5).

One use provides for a "community" cache supporting a single instance of a large data set

being used independently or collaboratively by several sites. This use is largely indepen-

dent of the existing EOSDIS system, but would require an application to coordinate the

data transfer from one or more DAACs to the DPSS. This application could also provide

30



the data structure definition and resource allocation by communication with the DPSS

name server. One possible origin of large data sets that need to be available on-line as a

unit are those that result from queries to multiple databases (e.g. data from multiple

DAACs).

A second potential use is as a buffer for high speed data sources. As a data source turns on

and off, it could write data to the DPSS. Once on the DPSS servers, the data can be read

off at rates suitable to an application loading a database. During the read process the data

can easily be reorganized since the DPSS provides very fast random access to data bocks.

(The whole DPSS is optimized as a random-access block server.) Similarly, the DPSS

could provide a high-speed, random-access cache for reorganizing and moving data

among DAACs.

6.0 Glossary

EOSDIS: Earth Observing System, Data and Information System

TDRSS I(relay satellites)

/
EOS Instruments ]

EOS Satellites ]

EDOS

(processing and
backup)

/
White Sands ]

Complex
(ground station)

QC SCFs

(data quality
control)

EOS DAACs

(data

management)

Figure 7 EOS DIS Architecture (from [2])

User SCFs

(research and

analysis)

DAAC: Distributed Active Archive Center (of EOSDIS)

EDOS: EOS Data and Operations System

SCF: Science Computing Facility (of EOSDIS - both NASA and user facility)

TDRSS: Tracking and Data Relay System
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In the present era of declining Defense budgets, increased pressure has been placed on our

Agency to utilize Commercial Off The Shelf (COTS) solutions to incrementally solve a

wide variety of our computer processing requirements. With the rapid growth in processing

power, significant expansion of high performance networking, and the increased

complexity of applications data sets, the requirement for high performance, large capacity,

reliable and secure, and most of all affordable robotic tape storage libraries has greatly

increased. Additionally, the migration to a heterogeneous, distributed computing

environment has further complicated the problem. With today's open system compute

servers approaching yesterday's supercomputer capabilities, the need for affordable,

reliable secure Mass Storage Systems (MSS) has taken on an ever increasing importance to

our processing centers' ability to satisfy operational mission requirements. To that end,

NSA has established an in-house capability to acquire, test, and evaluate COTS products.

Its goal is to qualify a set of COTS MSS libraries, thereby achieving a modicum of

standardization for robotic tape libraries which can satisfy our low, medium, and high

performance file and volume serving requirements. In addition, NSA has established

relations with other Government Agencies to complement this in-house effort and to

maximize our research, testing, and evaluation work. While the preponderance of the effort

is focused at the high end of the storage ladder, considerable effort will be extended this

year and next at the server class or mid range storage systems.

Over the past year, we have performed extensive testing of several high performance, high

capacity Mass Storage Systems. In the open systems arena, we have evaluated the Convex

based EMASS FileServ hierarchical storage management (HSM) product, see figure 1.

Initially, the system was tested for use in one of our processing areas as the deep

storage/archive for multiple server class UNIX based systems. These client systems were

networked using FDDI to the HSM which managed the multiple clients' stored files.

Classes were created, disk and tape capacity were dedicated to each client, and policies

were established to tune the system for each client's storage and retrieval needs. A

dedicated client system under the control of the test team was also included in the

configuration under test, so as to baseline the load and to control feeds and flows as the test

progressed. This element (a dedicated client system) is a recommended must for any

system level test. To establish a consistent approach to testing this and other Mass Storage

Systems, a standard test approach was developed. The first phase of this standard test was
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to qualify all of the vendor's commands and extensions and to verify that they operated as

advertised. Once this was completed, we used the dedicated Test Client System to generate

files of varying sizes and frequencies. This was essential to establish the baseline load. We

then would vary the feeds and flows and measure the change as multiples of our baseline

load, (e.g. 2X .... 10X, etc.). Since almost every HSM's performance is highly

dependent upon file size, we established three sizes of files (small: 1.5 MB, medium: 10-15

MB, and large 150 MB) in Order to adequately categorize the system's end-end

performance. Over the duration of our testing we carefully controlled the file size parameter

by phase so as to measure the optimal disk and tape allocations for each client system. Our

goal was not to break the system, but to establish the optimal range in which to have it

operate most efficiently.

In the early phases of our testing, we spent significant time comparing the file sent to the

HSM with the data stored. By performing check sums on each file stored for about a two

week period, we discovered a flaw in the Convex D2 tape driver microcode, which was

quickly fixed by the vendor. After two weeks of verifying that all of the data in each file

was successfully written to tape and could be retrieved, this testing was suspended. At our

Agency, data integrity is paramount and must always perform at 100%. Suffice it to say

that, although we were about the 20th customer for this commercial product, no other

customer had experienced the data integrity problem in their facility. We believe that this

was due to their testing approach. Although we do NOT normally perform this degree of

data integrity testing for most commercial products, it is strongly recommended that it be

done for any new tape drive that is introduced. Since we were using the EMASS EtLO0

Helical Scan D2 drives, we felt it necessary to verify data integrity at a high confidence

level; as our tests indicated, this was a wise step. We will also do this for IBM's NTP and

STK's REDWOOD drives before they are placed into production.

The next phase of our testing was aimed at sustainability and reliability. Since our storage

paradigm is to have all Mass Storage Systems located in unmanned spaces and to be

remotely monitored by a geographically separated command center, production storage

systems must be highly reliable and be capable of degraded mode operations. They must

operate for long periods of time without operator/maintenance intervention to justify their

existence. Our current standard for reliability is the STK silo which is our main line Mass

Storage System for today's production, see figure 2. Over the past year, all of the

drives/controllers have been upgraded to 36 track, and we are about 35% completed with

the infusion of 800 MB tapes. Over the past five years, we have had only a small level of

problems with these systems as they only require preventative maintenance at 6 month

intervals. With self contained cleaning cartridges, they have proven to be highly reliable

and satisfy our personnel staffing limitations.

Our Convex/EMASS HSM was initially tested with 4 ER90 D2 Helical Scan drives which

were housed in an Odetics Data Tower. Its capacity was about 5.7 TBs. During the

reliability/sustainability testing phase, we experienced significant difficulty with the
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robotics. Problems encountered included several instances of "stuck tapes', several

dropped tapes, excessive mechanical wear on the cassettes themselves, and repeated failure

of the robotic hub itself. Over a nine month period, five hub failures were experienced. The

lack of reliability of the hub in large measure caused the Government to fail the system

acceptance test. While the contractor went to yeoman efforts to attempt to correct these

deficiencies, the problem persisted. A side effect of the robotics failures made endurance

testing of the drives impossible; even still, we experienced a fair level of problems which

made the drive questionable for 'lights out' use. The principal problems encountered with

the drives were head related. We determined that in order to have a margin of safety, we

needed to have operators clean the heads shortly after 50 head/tape contact hours of use. In

order to accurately monitor remotely when this event occurred, software had to be written

which accessed firmware counters in the drives/controllers. In addition, operators had to

monitor the error correction code counters in the drives. Again, software had to be written

to enable this activity. We discovered that as soon as a drive had to employ the second level

ECC, it was prudent to vary the drive off line to preclude a permanent write error.

Employing this technique, we never encountered a hard write error. However, the degree

of monitoring by our test team and operations personnel was deemed excessive. Another

significant problem encountered was in the quality of the replacement heads. While some

heads greatly exceeded their warranty hour limit., others failed prematurely. We concluded

that this resulted from poor quality control in the manufacturing process. However, we

noted that once a set of heads got past the 70-100 hour mark, they tended to be reliable for

their design life, and often exceeded it. But once again, the degree of monitoring and

maintenance intervention made this library unsuitable for our lights out processing
scenario.

As a result of the aforementioned problems, the Government acquired an STK

POWDERHORN 36 track/800 MB per tape Silo system with eight 4490 drives. This

system was connected to our Convex/EMASS HSM as the second archive. It underwent its

acceptance testing without a single problem. With the long tape, it provided a capacity of

4.4 TBs. The Government was highly interested in verifying that the EMASS FileServ

software could effectively control two archives with different drive types. Since the client

systems had a preponderance of small files, on the order of 6-10 MBs, the STK robotics

and drives outperformed the Odetics/ER90 configuration. However, when the file sizes

were changed to 100-150 MBs, the ER90s were more efficient. Testing of the mixed mode

archive continued until the Govemment reached a level of confidence that the system could

perform as advertised. At that time, the Odetics Tower and ER90 drives were dismantled

and returned to the integration contractor. Noting the deficiencies encountered during the

testing, the contractor offered to deliver a Grau ABBA/2 robotic library with IBM NTP

drives as a replacement, see figure 3. This system will be integrated and tested with the

Government's loading scenarios at the contractor's facility prior to shipping the system to

NSA in January 1996.

The Convex/EMASS FileServ System with STK Silo and drives is now in production at

NSA. While the steps cited above are somewhat skewed to our specific clients/networks,
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we believethat our testapproachis soundand generallyapplicableto any robotic tape
HSM. In early 1994,we applied the sametestingapproachto a SurdAMASS/Metrum
RS48 robotic tapesystem.Once again, the themewas to verify the commandsetand
functionality, verify thedata integrity, evaluatethe reliability andsustainabilityof the
drives/robotics,andtocategorizethesustainedthroughputof the system.We found this to

be a stable product for low performance Mass Storage requirements.

NSA will evaluate the following server class systems during CY95. For the medium

performance solution we have acquired an SGI Challenge series computer running the

AMASS software. Three different robotic/drive configurations will be tested, see figure 4.

They are IBM 3494/NTP for high performance/high capacity, Quantum DLT/Odetics 2640

for medium performance/capacity, and Exabyte 480/Mammoth for low/medium

performance/capacity. Once again we will use the same approach as outlined above to

evaluate/categorize these configurations.

For the high end high performance/high capacity robotic tape requirements of the Scientific

Processing Complex, we have acquired two different volume servers. The first is an IBM

3495 L20 with 8 NTP drives which is being qualified by Cray Research Inc (CRI), see

figure 5. Once this qualification is completed, the system will be fielded at NSA and will

undergo in-house testing in late CY95. The second high performance/high capacity system

to be tested is a Grau ABBA/2 robotics with NTP drives. It also will be qualified by a

cooperative effort by E-Systems and CRI. Once the system is qualified, it will be shipped

to NSA and will undergo in-house testing in early CY96. Both of these systems will have

ESCON connectivity to the drives, which will facilitate sharing of the system by any of our

Crays.

We feel that the Mass Storage community should establish performance benchmarks for

products to aid the customer community in selecting the right Mass Storage products for

their operational requirements. Our experience is that none of the vendors can provide the

right size system configuration for any customer's needs. Today the entire burden for

system sizing and delivered performance rests on the customer. Vendors need to perform

and disseminate more evaluation information. They need to cover as broad a range as

possible, either with their own testing or teamed with another, larger vendor who has the

resources needed to perform the tests. Given a broad enough range of tests, customers

should be able to take the results and extrapolate the expected performance characteristics

for their environment. Solutions should be predictable and must include control processor

network bandwidth, memory and disk needs, channels and I/O bandwidth, numbers of

drives, and controllers, and robotics speeds. All that really matters for a Mass Storage

System is the end-to-end sustainable bandwidth for stores and retrieves between the clients

and the HSM. The industry must address some form of performance benchmark standards

which will be the first step in aiding the customer in selecting the right system configuration

for their unique problem. We have SpecMarks for processors, TP benchmarks for Data

Base machines, but have nothing for storage systems. This area must be addressed soonest
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by the storage vendors. NSA has invested significant in-house resources in evaluating just

a few of the systems available on the commercial marketplace. Scalability of the number of

files that the HSM can manage is another key area of uncertainty. NSA has discovered the

EMASS FileServ HSM has scalability limits largely caused by their use of Ingres RDBMS

software in their commercial product.While this is a temporal limit, scalability testing of

the product by vendors in-house, prior to first customer ship is a must for companies to

survive. Competition dictates that this must be done and done quickly.

In summary, our approach should be clear as we have standardized on three different

robotic tape systems for our high end processors across our various computer complexes.

These are IBM 3494/5, Grau ABBA/2, and STK 4400 silos. The drives used with these

robotics include: IBM/STK 36 track, NTP, and D3. For our server class systems we have

a similar approach envisioned, as outlined above. The principal common entity for the

server class problem is the AMASS HSM product. The specific drive/robotics and platform

will be selected based on the required performance and capacity. Regarding high

performance file servers, we will evaluate the scalability of the EMASS FileServ product

during early 1996 and make our decision regarding its suitability for 150+ TB libraries.

Our ultimate goal for the future would be to have one logical shared robotic tape library,

accessible by any of our computer complexes.
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Abstract

The rapid growth in the size of datasets has caused a serious imbalance in I/O and storage
system performance and functionality relative to application requirements and the
capabilities of other system components. The High Performance Storage System (HPSS)
is a scalable, next-generation storage system that will meet the functionality and
performance requirements of large-scale scientific and commercial computing
environments.

Our goal is to improve the performance and capacity of storage systems by two orders of
magnitude or more over what is available in the general or mass marketplace today. We are
also providing corresponding improvements in architecture and functionality. This paper
describes the architecture and functionality of HPSS.

Introduction

The rapid improvement in computational science, processing capability, main memory
sizes, data collection devices, multimedia capabilities, and integration of enterprise data are
producing very large datasets. These datasets range from tens to hundreds of gigabytes up
to terabytes. In the near future, storage systems must manage total capacities, both
distributed and at single sites, scalable into the petabyte range. We expect these large
datasets and capacities to be common in high-performance and large-scale national
information infrastructure scientific and commercial environments. The result of this rapid

growth of data is a serious imbalance in I/O and storage system performance and
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functionality relative to application requirementsand the capabilities of other system

components.

To deal with these issues, the performance and capacity of large-scale storage systems must
be improved by two orders of magnitude or more over what is available in the general or
mass marketplace today, with corresponding improvements in architecture and
functionality. The goal of the HPSS collaboration is to provide such improvements. HPSS
is the major development project within the National Storage Laboratory (NSL). The NSL
was established to investigate, demonstrate, and commercialize new mass storage system
architecture to meet the needs above [5,7,21]. The NSL and closely related projects involve
more than 20 participating organization from industry, Department of Energy (DOE) and
other federal laboratories, universities, and National Science Foundation (NSF)
supercomputer centers. The current HPSS development team consists of IBM U.S.
Federal, four DOE laboratories (Lawrence Livermore, Los Alamos, Oak Ridge, and
Sandia), Cornell University, and NASA Langley and Lewis Research Centers. Ampex,
IBM, Maximum Strategy Inc., Network Systems Corp., PsiTech, Sony Precision
Graphics, Storage Technology, and Zitel have supplied hardware in support of HPSS
development and demonstration. Cray Research, Intel, IBM, and Meiko are cooperating in
the development of high-performance access for supercomputers and MPP clients.

The HPSS commercialization plan includes availability and support by IBM as a high-end
Service offering through IBM U.S. Federal. HPSS source code can also be licensed and

marketed by any US. company.

Architectural Overview

The HPSS architecture is based on the IEEE Mass Storage Reference Model: version 5
[6,9] and is network-centered, including a high speed network for data transfer and a
separate network for control (Figure 1) [4,7,13,16]. The control network uses the Open
Software Foundation's (OSF) Distributed Computing Environment DCE Remote
Procedure Call technology [17]. In actual implementation, the control and data transfer
networks may be physically separate or shared. An important feature of HPSS is its
support for both parallel and sequential input/output (I/O) and standard interfaces for
communication between processors (parallel or otherwise) and storage devices. In typical
use, clients direct a request for data to an HPSS server. The HPSS server directs the
network-attached storage devices or servers to transfer data directly, sequentially or in
parallel to the client node(s) through the high speed data transfer network. TCP/IP sockets
and IPI-3 over High Performance Parallel Interface (HIPPI) are being utilized today; Fibre
Channel Standard (FCS) with IPI-3 or SCSI, or Asynchronous Transfer Mode (ATM) will
also be supported in the future [3,20,22]. Through its parallel storage support by data
striping HPSS will continue to scale upward as additional storage devices and controllers
are added to a site installation.
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Figure I - Example of the type of configuration HPSS is designed to support

The key objectives of HPSS are now described.

Scalability

A major driver for HPSS is to develop a scalable, distributed, high performance storage
management system. HPSS is designed to scale in several dimensions.

The HPSS I/O architecture is designed to provide I/O performance scaling by supporting

parallel I/O through software striping [1]. The system will support application data
transfers from megabytes to gigabytes per second with total system throughput of many
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gigabytesper second.Dataobjectnumberandsizemust scaleto supportbillions of data
objects,each potentially terabytes or larger in size, for total storage capacities in petabytes.
This is accomplished through 64-bit metadata fields and scalable organization of system
metadata. The system also is required to scale geographically to support distributed systems
with hierarchies of hierarchical storage systems. Multiple storage systems located in

different areas must integrate into a single logical system accessible by personal computers,
workstations, and supercomputers. These requirements are accomplished using a
client/server architecture, the use of OSF's DCE as its distributed infrastructure, support
for distributed file system interfaces and multiple servers. HPSS also supports a scalable
storage object name service capable of managing millions of directories and the ability to
support hundreds to thousands of simultaneous clients. The latter is achieved through the
ability to multitask, multiprocess and replicate the HPSS servers.

Modularity and APIs

The HPSS architecture is highly modular. Each replicable software component is
responsible for a set of storage objects, and acts as a service provider for those objects. The
IEEE Reference Model, on which the HPSS design is based, provides the modular layered

functionality (see Figure 2) [6,9]. The HPSS software components are loosely coupled,
with open application program interfaces (APIs) defined at each component level. Most
users will access HPSS at its high level interfaces-currently client API, FTP (both parallel
and sequential), NFS, Parallel File System (PFS), with AFS/DFS, Unix Virtual File
System (VFS), and Data Management Interface Group (DMIG) interfaces in the future)
[11,15,18,19]. However, APIs are available to the underlying software components for
applications, such as large scale data management, digital library or video-on-demand
requiring high performance or special services. This layered architecture affords the
following advantages:

Replacement of selected software comp0nents-As new and better
commercial software and hardware components became available, an installation
can add or replace existing components. For example, an installation might add or
replace Physical Volume Repositories, Movers or the HPSS Physical Volume
Library with other commercially available products.

Support of applications direct access to lower level services-The

layered architecture is designed to accommodate efficient integration of different
applications such as digital library, object store, multimedia, and data management
systems. Its modularity will enable HPSS to be embedded transparently into the
large distributed information management systems that will form the information
services in the emerging national information infrastructure. Support for different
name spaces or data organizations is enabled through introduction of new Name
Servers and data management applications.

Portability and Standards

Another important design goal is portability to many vendor's platforms to enable OEM and
multivendor support of HPSS. HPSS has been designed to run under Unix requiting no
kernel modifications, and to use standards based protocols, interfaces, and services where
applicable. HPSS is written in ANSI C, and uses POSIX functions to enhance software

portability. Use of existing commercial products for many of the infrastructure services
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supportedon multiple-vendorplatformsenablesportability, while alsoproviding market
proven dependability. Open Software Foundation (OSF) Distributed Computing
Environment(DCE), Transarc'sEncinatransactionmanager [8], Kinesix SAMMI and
X-windows are being usedby HPSSbecauseof their support acrossmultiple vendor
platforms,in additionto therich setof functionalityprovided.TheHPSScomponentAPIs
havebeenturnedoverto theIEEEStorageSystemStandardsWorkingGroupasabasisfor
its standardsactivities.

Reliability and Recovery

Reliable and recoverable storage of data is mandatory for any storage system. HPSS
supports several mechanisms to facilitate this goal. The client-server interactions between
HPSS software components have been designed to be based on atomic transactions in
order to maintain system state consistency [14]. Within the scope of a given request, a
transaction may be established so that an abort (or commit) in one component will cause the
other participating components to abort (or commit). The HPSS Metadata Manager is fully
integrated with its Transaction Manager. Following an abort, the non-volatile file and name
space metadata changes within the scope of the transactions will automatically be rolled
back. For recovery purposes, mirroring of the storage object and name space metadata is
supported. The HPSS architecture will also support data mirroring if desired in a future
release.

Support is also provided to recover from failed devices and bad media. An administrator

interface is provided to place a device off line. Once the device has been repaired, it may
then be placed back on line. For bad media, an application interface is provided to move
storage segments from a virtual volume to a new virtual volume.

The HPSS software components execute in a distributed manner. Should a processor fail,
any of the HPSS software components may be moved to another platform. Component
services are registered with the DCE Cell Directory Service (CDS) so that components may
locate the services. Each component has also been designed to perform reconnect logic
when a connection to a peer component fails. Connection context is maintained by selected
components. When a connection context is established, a keep-alive activity is started to
detect broken connections. A server may use the context information associated with a
broken connection to perform any necessary clean up.

Security and Privacy

HPSS uses DCE and POSIX security and privacy mechanisms for authentication, access

control lists, permissions and security labels. Security policy is handled by a separate
policy module. Audit trails are also supported. Further, HPSS design and implementation
use a rigorous software engineering methodology which support its reliability and
maintainability.

Storage System Management

HPSS has a rich set of storage system management services for operators and system
administrators based on managed object definitions. The application programming interface
supports monitoring, reporting and controlling operations (see Appendix A).
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Software Components

The HPSS software components are shown Figure 2. The shaded boxes are defined in the
IEEE Mass Storage Reference Model: version 5 [9].
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This section outlines the function of each component.

Infrastructure

HPSS design is based upon a well-formed industry standard infrastructure. The key
infrastructure components are now outlined.

Distributed Computing Environment

HPSS uses OSF's DCE as the base infrastructure for its distributed architecture [17]. This
standards-based framework will enable the creation of distributed storage systems for a

national information infrastructure capable of handling gigabyte-terabyte-class files at
gigabyte per second data transfer rates.

HPSS
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c DCE DCE e
u Distributed Directory mr
i Time Service Service en

DCE Remote Procedure Call

I ,v DCE Threads

I Operating System and Transport Services

Figure 3 - HPSS DCE Architecture Infrastructure

DCE was selected because of its wide adoption among vendors and its near industry-
standard status. HPSS uses the DCE Remote Procedure Call (RPC) mechanism for control

messages and DCE Threads for multitasking. The DCE threads package is vital for HPSS
to serve large numbers of concurrent users and to enable multiprocessing of its servers.
HPSS also uses the DCE Security, Cell Directory, and Time services. A library of DCE
convenience functions was developed for use in HPSS.

Transaction Management

Requests to HPSS to perform actions such as creating bitfiles or accessing file data results
in client]server interactions between software components. Transaction integrity is required
to guarantee consistency of server state and metadata in case a particular component should
fail. As a result, a transaction manager was required by HPSS. Encina, from Transarc, was
selected by the HPSS project as its transaction manager [8]. This selection was based on
functionality, its use of DCE, and multi-platform vendor support.
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Encina provides begin-commit-abort semantics, distributed two-phase commit, and nested
transactions. In addition, Transaction RPCs (TRPCs), which extend DCE RPCs with

transaction semantics, are provided. For recovery purposes, Encina uses a write-ahead log
for storing transaction outcomes and updates to recoverable metadata. Mirroring of data is
also provided.

I Encina Toolkit Server Core
Enclna Toolkit Executive

OSF DCE

infunctionO;
transaction {

}
onCommlt

,,,

onAbort

code structure

Figure 4 - Encina Components

Metadata Management

Each HPSS software component has system metadata associated with the objects it
manages. Each server with non-volatile metadata requires the ability to reliably store its
metadata. It is also required that metadata management performance be scalable as the
number of object instances grow. In addition, access to metadata by primary and secondary
keys is required. The Structured File Server (SFS), an Encina optional product, was
selected by the HPSS project as its metadata manager. SFS provides B-tree clustered file
records, record and field level access, primary and secondary keys, and automatic byte
ordering between machines. SFS is also fully integrated with the Encina transaction
manager. As a result, SFS provides transaction consistency and data recovery from
transaction aborts. For reliability purposes, HPSS metadata stored in SFS is mirrored. A
library of metadata manager convenience functions for retrieving, adding, updating, and
deleting metadata for each of the HPSS components was developed.

Enclna SFS

Encina Toolkit Server Core

Encina Toolkit Executive

OSF DCE

Figure 5 - Structured File Server (SFS)

Security

The security components of HPSS provide authentication, authorization, enforcement, and

audit capabilities for the HPSS components. Authentication is responsible for guaranteeing
that a principal is the entity that is claimed, and that information received from an entity is
from that entity. Authorization is responsible for enabling an authenticated entity access to
an allowed set of resources and objects. Authorization enables end user access to HPSS

directories and bitfiles. Enforcement is responsible for guaranteeing that operations are
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restrictedto the authorizedsetof operations.Enforcementappliesto end useraccessto
bitfiles. Audit is responsiblefor generatinga log of security relevantactivity. HPSS
securitylibrariesutilizeDCEandDCE security.Theauthenticationservice,which ispartof
DCE, is basedonKerberosv5. Thefollowing figure depictshow HPSSsecurityfits with
DCE andKerberos.
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Figure 6 - HPSS Security

Communication

The control path communications between HPSS components is through DCE RPCs or
Encina transaction RPCs. For data path communication, the HPSS Mover(s) currently
utilize either Sockets or IPI-3 (over HIPPI) libraries. Future support is planned for IPI-3
and SCSI over Fibre Channel Standard and TCP_P over ATM. A special parallel data

transfer library has been developed. This library allows data to be transferred across many
parallel data connections. The library transfers data headers that identify the data that
follows. This allows data to be sent and arrive in any order on the parallel paths.

Logging

The HPSS logger is used to record alarms, events, requests, security audit records,
accounting records, and trace information from the HPSS components. A central log is
maintained which contains records from all HPSS components. A local log of activity from
components on each HPSS node is also supported. When the central log fills, it will switch
to a secondary log file. A configuration option allows the filled log to be automatically
archived to HPSS. A delog function is provided to extract and format log records. Delog
options support filtering by time interval, record type, server, and user.
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64 Bit Arithmetic Libraries

HPSS supports file sizes up to 2**64 bytes. Many vendor platforms support only 32 bit
integer arithmetic. In order to support large file sizes and large numbers of objects on 32 bit
platforms, a library of 64 bit arithmetic functions has been developed. The functions
support both big endian and little endian I/O architectures.

Interfaces

HPSS supports several high-level interfaces: currently Client API, FTP (both standard and

parallel), and NFS, with DFS/AFS, DMIG, and VFS planned for future releases.

Client API

The HPSS Client file server API mirrors the POSIX file system interface specification

where possible. The Client API also supports extensions to allow the programmer to take
advantage of the specific features provided by HPSS (e.g., class-of-service, storage/access
hints passed at file creation and support for parallel data transfers).

FTP (standard and parallel)

HPSS provides a standard FTP server interface to transfer files from HPSS to a local file
system. Parallel FTP, an extension and superset of standard FTP, has been implemented to
provide high performance data transfers to client systems. The standard FTP protocol
supports third-party data transfer through separation of the data transfer and control paths,
but it does not offer parallel data paths [11]. HPSS modified and augmented the standard
client FTP file retrieval and storage functions to offer parallel data paths for HPSS data
transfers. This approach provides high performance FTP transfers to the client while still
supporting the FTP command set. Additional commands have been added to support
parallel transfer. This work will be submitted to the Internet Engineering Task Force for
standardization.

NFS

The NFS V2 Server interface for HPSS provides transparent access to HPSS name space

objects and bitfile data for client systems from both the native HPSS and the Network File
System V2 service. The NFS V2 Server translates standard NFS calls into HPSS control
calls and provides data transfers for NFS read and write requests. The NFS V2 Server
handles optimization of data movement requests by the caching of data and control
information. If the server machine crashes, the NFS V2 Server is in charge of recovery of
all cached data at the time of the crash. The NFS V2 Server will also recover when HPSS

crashes. Before NFS clients can request NFS services, they must mount an exported
HPSS directory by calling the Mount daemon mount API. Support for NFS V3 is planned
for a future release.
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Parallel File System

HPSS provides the capability to act as an external hierarchical file system to vendor Parallel
File Systems (PFS). The first implementation supports the IBM SPx PIOFS. Early
deployment is also planned for Intel Paragon and Meiko PFS integration with HPSS.

Name Server (NS)

The Name Server maps a file name to an HPSS object. The Name Server provides a
POSIX view of the name space which is a hierarchical structure consisting of directories,
files, and links. File names are human readable ASCII strings. Namable objects are any
object identified by HPSS Storage Object IDs. The commonly named objects are bitfiles,
directories, or links. In addition to mapping names to unique object identifiers, the Name
Server provides access verification to objects. POSIX Access Control Lists (ACLs) are
supported for the name space objects. A key requirement of the Name Server is to be able
to scale to millions of directories and greater than a billion name space entries.

Bitfile Server (BFS)

The Bitfile Server provides the POSIX file abstraction to its clients. A logical bitfile is an
uninterpreted bit string. HPSS supports bitfile sizes up to 2**64 bytes. A bitfile is
identified by a Bitfile Server generated name called a bitfile-id. Mapping of a human
readable name to the bitfile id is provided by a Name Server external to the Bitfile Server.

Clients may reference portions of a bitfile by specifying the bitfile-id and a starting address
and length. The writes and reads to a bitfile are random and the writes may leave holes
where no data has been written. The Bitfile Server supports both sequential and parallel
read and write of data to bitfiles. In conjunction with Storage Servers, the Bitfile Server
maps logical portions of bitfiles onto physical storage devices.

Storage Server (SS)

The Storage Server provides a hierarchy of storage objects: logical storage segments,
virtual volumes and physical volumes. All three layers of the Storage Server can be
accessed by appropriately privileged clients. The server translates references to storage
segments into references to virtual volume and finally into physical volume references. It
also schedules the mounting and dismounting of removable media through the Physical
Volume Library. The Storage Server in conjunction with the Mover have the main
responsibility for orchestration of HPSS's parallel I/O operations.

The storage segment service is the conventional method for obtaining and accessing HPSS

storage resources. The Storage Server maps an abstract storage space, the storage segment,
onto a virtual volume, resolving segment addresses as required. The client is presented
with a storage segment address space, with addresses from 0 to N-l, where N is the byte
length of the segment. Segments can be opened, created, read, written, closed and deleted.
Characteristics and information about segments can be retrieved and changed.

The virtual volume service is the method provided by the Storage Server to group physical

storage volumes. The virtual volume service supports striped volumes today and mirrored
volume in a future release. Thus, a virtual volume can span multiple physical volumes. The
Storage Server maps the virtual volume address space onto the component physical
volumes in a fashion appropriate to the grouping. The client is presented with a virtual
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volume that can be addressed from 0 to N-1, where N is the byte length of the virtual
volume. Virtual volumes can be mounted, created, read, written, unmounted and deleted.

Characteristics of the volume can be retrieved and in some cases, changed.

The physical volume service is the method provided by the storage server to access the
physical storage volumes in HPSS. Physical volumes can be mounted, created, read,
written, unmounted and deleted. Characteristics of the volume can be retrieved and in some

cases, changed.

Repack runs as a separate process. It provides defragmentation of physical volumes.
Repack utilizes a Storage Server provided function which moves storage segments to a
different virtual volume.

Mover (Mvr)

The Mover is responsible for transferring data from a source device(s) to a sink device(s).
A device can be a standard I/O device with geometry (e.g., a tape or disk), or a device
without geometry (e.g., network, memory). The Mover also performs a set of device
control operations. Movers perform the control and transfer of both sequential and parallel
data transfers.

The Mover consists of several major parts: Mover parent task, Mover listen task/request

processing task, Data Movement, Device control, and System Management.

The Mover parent task performs Mover initialization functions, and spawns processes to
handle the MoveI's DCE communication, data transfer connections, as well as the Mover's
functional interface. The Mover listen task listens on a well-known TCP port for incoming

connections to the Mover, spawns request processing tasks, and monitors completion of
those tasks. The request processing task performs initialization and return functions
common to all Mover requests. Data movement supports client requests to transfer data to
or from HPSS. Device control supports querying the current device read/write position,

changing the current device read/write position, loading a physical volume into a drive,
unloading a physical volume from a drive, flushing data to the media, writing a tape mark,
loading a message to a device's display area, reading a media label, writing a media label,
and zeroing a portion of disk. System management supports querying and altering device
characteristics and overall Mover state.

Physical Volume Library (PVL)

The PVL manages all HPSS physical volumes. Clients can ask the PVL to mount and
dismount sets of physical volumes. Clients can also query the status and characteristics of

physical volumes. The PVL maintains a mapping of physical volume to cartridge and a
mapping of cartridge to PVR. The PVL also controls all allocation of drives. When the
PVL accepts client requests for volume mounts, the PVL allocates resources to satisfy the
request. When all resources are available, the PVL issues commands to the PVR(s) to
mount cartridges in drives. The client is notified when the mount has completed.

The Physical Volume Library consists of two major parts: Volume mount service and

Storage system management service.
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The volume mount serviceis provided to clients suchas a StorageServer.Multiple
physicalvolumesbelongingto avirtual volumemaybespecifiedaspartof asinglerequest.
All of the volumeswill be mountedbeforethe requestis satisfied.All volume mount
requestsfrom all clientsarehandledby thePVL. This allowsthePVL to preventmultiple
clientsfrom deadlockingwhentrying to mountintersectingsetsof volumes.Thestandard
mountinterfaceis asynchronous.A notificationis providedto theclient whentheentireset
of volumes hasbeenmounted.A synchronousmount interface is also provided. The
synchronousinterfacecanonly beusedto mounta singlevolume,notsetsof volumes.The
synchronousinterfacemight beusedby a non-HPSSprocessto mountcartridgeswhich
arein atapelibrary, butnotpartof theHPSSsystem.

Thestoragesystemmanagementserviceis providedto allowamanagementclient control
overHPSStaperepositories.Interfacesareprovidedto import,export,andmovevolumes.
WhenvolumesareimportedintoHPSS,thePVL is responsiblefor writing a label to the
volume. This label can be usedto confirm the identity of the volume every time it is
mounted.Managementinterfacesare also provided to query and set the statusof all
hardwaremanagedby thePVL (volumes,drives,andrepositories).

Physical Volume Repository (PVR)

The PVR manages all HPSS supported robotics devices and their media such as cartridges.
Clients can ask the PVR to mount and dismount cartridges. Every cartridge in HPSS must
be managed by exactly one PVR. Clients can also query the status and characteristics of
cartridges.

The Physical Volume Repository consists of these major parts: Generic PVR service, and
support for devices such as Ampex, STK, and 3494/3495 robot services, as well as an
operator mounted device service.

The generic PVR service provides a common set of APIs to the client regardless of the type
of robotic device being managed. Functions to mount, dismount, inject and eject cartridges
are provided. Additional functions to query and set cartridge metadata are provided. The
mount function is asynchronous. The PVR calls a well-known API in the client when the
mount has completed. For certain devices, like operator mounted repositories, the PVR will
not know when the mount has completed. In this case it is up to the client to determine
when the mount has completed. The client may poll the devices or use some other method.
When the client determines a mount has completed, the client should notify the PVR using
one of the PVR's APIs. All other PVR functions are synchronous. The generic PVR
maintains metadata for each cartridge managed by the PVR. The generic PVR interface calls
robotics vendor supplied code to manage specific robotic devices.

The operator mounted device service manages a set of cartridges that are not under the

control of a robotics device. These cartridges are mounted to a set of drives by operators.
The Storage System Manager is used to inform the operators when mount operations are
required.

Storage System Management (SSM)

The HPSS SSM architecture is based on the ISO managed object architecture [10,12]. The
Storage System Manager (SSM) monitors and controls the available resources of the HPSS

storage system in ways that conform to the particular management policies of a given site.
Monitoring capabilities include the ability to query the values of important management
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attributesof storagesystemresourcesaswell asanability to receivenotificationsof alarms
andothersignificant systemevents.Controllingcapabilitiesincludetheability to setthe
valuesof managementattributesof storagesystemresourcesand storagesystempolicy
parameters.Additionally, SSM can requestthat specific operationsbe performedon
resourceswithin the storagesystem,suchas adding and deleting logical or physical
resources.Theoperationsperformedby SSMareusuallyaccomplishedthroughstandard
HPSSserverAPIs.

SSM managementroles cover a wide spectrum,including configuration aspectsof
installation,creatingnewvolumes,initialization,operations,andterminationtasks.SSM
canprovidemanagementcapabilitiesto arangeof clients, including siteadministrators,
systemsadministrators,operationspersonnel,complexgraphical user interface (GUI)
managementenvironments,andindependentmanagementapplicationsresponsiblefor tasks
suchaspurges,migration,andreclamation.Someof thefunctionalareasof SSMinclude
fault management, configuration management,security management,accounting
management,andperformancemanagement.

SSM consists of thesemajor parts: SSM Graphical User Interface (SAMMI GUI
Displays),SAMMI DataServer,andSystemManager.

The SSM Graphical User Interface allows operators, administrators, and users to
interactivelymonitor andcontroltheHPSSstoragesystem.Kinesix'sSAMMI productis
usedto provide theHPSSGUI services.SAMMI is built onX-windowsandOSF'sMotif.
It providesmechanismsto simplify screendesignanddatamanagementservicesfor screen
fields. StandardMotif widgetssuchasmenus,scrollbar lists, andbuttonsareused.In
addition SAMMI specific widgets suchas dials, gauges,and bar chartsare used for
informationalandstatisticaldata.

The SAMMI Data Serveris aclient to the SystemManageranda serverto theSAMMI
RuntimeDisplayManager.TheSAMMI DataServeris themeansbywhichdatais acquired
andfedto theSAMMI Displays.

The StorageSystemManageris a client to theHPSSserversanda serverto theSAMMI
DataServerandotherexternalclientswishingto performmanagementspecificoperations.
It interfacesto themanagedobjectsdefinedbytheHPSSservers.
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Figure 7 - Storage System Management
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Migration . Purge

The Migration-Purge server provides hierarchical storage management for HPSS through
migration and caching of data between devices. There are two types of migration and
caching: disk migration and caching and tape migration and caching. Multiple storage
hierarchies are supported by HPSS [2]. Data is cached to the highest level (fastest) device
in a given hierarchy when accessed and migrated when inactive and space is required.

The main purpose of disk migration is to free up the disk storage. This type of migration
contains two functions; migration and purge. Migration selects the qualified bitfiles and
copies these bitfiles to the next storage level defined in the hierarchy. Purge later frees the
original bitfiles from the disk storage.

The main purpose of tape migration is to free up tape volumes, and not just migrate bitfiles.
The active bitfiles in the target virtual volumes are moved laterally to the free tape volumes
in the same storage level. The inactive bitfiles in the target virtual volumes are migrated to
the free tape volumes in the next storage level.

The HPSS component client APIs provide the vehicle for the Storage System Manger to
request the server to start migration and purge whenever it is necessary. The migration-
purge server is set up to run migration periodically with the time interval specified in the
migration policy. In addition, the server will start the migration and purge to run
automatically if the free space of a storage class is below the percentage specified in the
migration-purge policy.

Other

Installation

Installation software is provided for system administrators to install/update HPSS, and
perform the initial configuration of HPSS following installation. The full HPSS system is
first installed to an installation node. Selected HPSS software components may then be
installed (using the remote installation feature) from the installation node to the other nodes
where HPSS components will be executed.

NSL-UniTree Migration

HPSS, through its support of parallel storage, provides significant improvements in I/O
rates and storage capacity over existing storage systems software. In transitioning from
existing systems, a migration path is required. The migration path should be transparent to
end users of the storage system. The capability to migrate from NSL UniTree to I-tPSS is
provided. The migration software handles both file metadata and actual data. Utilities
convert the file metadata (e.g., storage maps, virtual volume data, physical volume data),
and name space metadata from UniTree format to HPSS format. Actual data is not moved.
The HPSS Mover software contains additional read logic to recognize NSL UniTree data
formats when an NSL UniTree file is accessed. Utilities to support migration from other
legacy storage systems will also be provided as required.
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Accounting

HPSS provides interfaces to collect accounting information (initially storage space
utilization). These interfaces may be used by site specific programs to charge for data

storage. SSM provides user interfaces to run the accounting collection utility, change
account numbers and change the account code assigned to storage objects.

Summary and Status

We have described the key objectives, features and components of the HPSS architecture.
At the time this paper is being written, December 1994, HPSS Release 1 (R1) is in

integration testing and planning for its early deplo.yment at several sites has begun. R1
contains all the basic HPSS components and services and supports parallel tape. It is

targeted at MPP environments with existing parallel disk services. Much of the coding for
Release 2 (R2) has been completed also. R2 adds support for parallel disks, migration and

caching between levels of the hierarchy and other functionality. R2 will be a complete
stand-alone system and is targeted for third quarter 1995.

We demonstrated, HPSS at Supercomputing 1994 with R1 and early R2 capabilities of

parallel disks, and tape access (Ampex D2, IBM NTP and 3490), to an IBM SP2, IBM RS
6000, PsiTech framebuffer, and Sony high-resolution monitor over a NSC HIPPI switch.
HPSS R1 is on order 95K lines of executable source code and R2 is expected to add on
another 50K lines of executable source code.

Our experience indicates that the architectural choices of basing the system on the IEEE
Reference Model, use of an industry defacto standard infrastructure based on OSF DCE
and Transarc Encina, and use of other industry standards such as POSIX, C, Unix, ISO

managed object model for Storage System Management and standard communication
protocols is sound. This foundation plus the software engineering methodology employed,
we believe, positions HPSS for a long and useful life for both scientific and commercial

high performance environments.
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APPENDIX A

Application Programming Interfaces (APIs) to HPSS Components

HPSS provides an application client library containing file, directory, and client state
operations.

The HPSS Client Library

related functionality.
API

hpss_Open

hpss_Close

hpss_Umask

hpss_Read

hpss_Write

hpss_Lseek

hpss_ReadList

hpss_WriteList

hpss_Stat

hpss_Fstat

hpss_Lstat

hpss_FileGetAttributes

hpss_FileSetAttributes

hpss_Access

hpss Chmod

hpss_Chown

hpss_Utime

hpss_GetACL

hpss_DeleteACLEntry

hpss_UpdateACLEntry

hpss_Truncate

hpss_Ftruncate

provides the following routines grouped by

Clients

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

Description

Optionally create and open an HPSS file

Close a file

Set the file creation mask

Read a contiguous section of an HPSS
file, beginning at the current file offset
into a client buffer

Write data from a client buffer to a

contiguous section of an HPSS file,
beginning at the current file offset

Reposition the read/write file offset

Read data from an HPSS file, specifying
lists for data sources and sinks

Write data to an HPSS file, specifying
lists for data sources and sinks

Get file status

Get file status

Get file status, returning status about a
symbolic link if the named file is a
symbolic link

Get attributes for a file

Alter file attribute values

Check file accessibility

Change the file mode of an HPSS file

Change owner and group of an HPSS file

Set access and modification times of an
HPSS file

Query the Access Control List of a file

Remove an entry from the Access Control
List of a file

Update an entry in the Access Control List
of a file

Set the length of a file

Set the length of a file
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hpss_Fclear

hpss_Cache

hpss_Fcache

hpss_Purge

hpss_Fpurge

hpss_Migrate

hpss_Fmigrate

hpss_Link

hpss_Unlink

hpss_Rename

hpss_Symlink

hpss_Readlink

hpss_Mkdir

hpss_Rmdir

hpss_Opendir

hpss_Readdir

hpss_Rewinddir

hpss_Closedir

hpss_Chdir

hpss Getcwd

hpss_Chroot

hpss_LoadThreadState

hpss_ThreadCleanup

hpss_Statfs

hpss_AccessHandle

hpss_OpenBitfile

hpss_OpenHandle

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

Clear part of a file

Cache a piece of a file to a specified level
in the storage hierarchy

Cache a piece of a file to a specified level
in the storage hierarchy

Purge a piece of a file from a specified
level in the storage hierarchy

Purge a piece of a file from a specified
level in the storage hierarchy

Migrate a piece of a file from a specified
level in the storage hierarchy

Migrate a piece of a file from a specified
level in the storage hierarchy

Create a hard link to an existing HPSS file

Remove an entry from an HPSS directory

Rename a file or directory

Create a symbolic link

Read the contents of a symbolic link (i.e.,
the data stored in the symbolic link)

Create a directory

Remove an HPSS directory

Open an HPSS directory

Read a directory entry

Reset position of an open directory stream

Close an open directory stream

Change current working directory

Get current working directory

Change the root directory for the current
client

Updates the user credentials and
file/directory creation mask for a thread's
API state

Cleans up a thread's Client API state

Returns information about the HPSS file

system

Determines client accessibility to a file,

given a Name Server object handle and
file pathname

Opens and HPSS file, specified by bitfile
ID

Open an HPSS file, specified by Name
Server object ID and, optionally,

pathname
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hpss_GetAttrHandle

hpss_SetAttrHandle

hpss_GetACLHandle
hpss_DeleteACLEntry-Handle

hpss_UpdateACLEntry-Handle

hpss_LinkHandle

hpss_LookupHandle

hpss_MkdirHandle
hpss_RmdirHandle
hpss_ReaddirHandle
hpss_UnlinkHandle
hpss_RenameHandle
hpss_SymlinkHandle
hpss_ReadlinkHandle
hpss_TruncateHandle
hpss_StageHandle

hpss_PurgeHandle

hpss_MigrateHandle

client

client

client
client

client

client

client

client
client
client
client
client
client
client
client
client

client

client

Getattributesof anHPSSfile, specified
by NameServerobjectID and,
optionally,pathname
Setattributesof anHPSSfile, specified
by NameServerobjectID and,
optionally,pathname
QuerytheAccessControlList of afile
Removeanentryfrom theAccessControl
List of afile
Updateanentryin theAccessControlList
of afile
Createahardlink to anexistingHPSS
file, giventhenamespaceobjecthandleof
theexistingobject,andrelativedirectory
for thenewlink andthepathnameof the
newlink
QuerytheNameServertoobtain
attributes,anaccessticketandobject
handlefor aspecifiednamespaceentry
Createanewdirectory
Removeadirectory
Readdirectoryentries
Removedirectoryentry
Renameadirectoryentry
Createasymboliclink
Readthecontentsof asymboliclink
Setthelengthof afile
Stageapieceof afile to aspecifiedlevel
in thestoragehierarchy
Purgeapieceof afile from aspecified
levelin thestoragehierarchy
Migrateapieceof afile from aspecified
levelin thestoragehierarchy
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The Name Server provides APIs for the followin_ operations:

API Clients Description

ns_Insert

ns_Delete

ns_Rename

ns_MkLink

ns_MkSymLink

ns_ReadLink

ns_GetName

ns_GetACL

ns_SetACL

ns_DeleteACLEntry

ns_UpdateACLEntry

ns_Mkdir

ns_ReadDir

ns_GetAttrs

ns_SetAttrs

client

client

client

client

client

client

client

client

client

client

client

client

client

SSM, client

SSM, client

Insert a bitfile object into a directory

Delete a name space object

Rename a name space object

Create a hard link to file

Make a symbolic link

Read data associated with a symbolic link

Get path name for the specified bitfile

Get an ACL for the specified name server object

Set an ACL for the specified name server object

Delete an entry from the ACL of the specified
name server object

Update an entry from the ACL of the specified
name server object

Create a directory

Return a list of directory entries

Get Name Server handle and managed object
attributes

Set Name Server managed object attributes

The Bitfile Server provides APIs for the followin[[ operations:

API Client Description

bfs_Create

bfs_Unlink

bfs_Open

bfs_Close

bfs_Read

bfs_Write

bfs_BitfileGetAttrs

bfs_BitlileSetAttrs

bfs_BitfileOpenGetAttrs

bfs_BitfileOpenSetAttrs

bfs_ServerGetAttrs

bfs_ServerSetAttrs

bfs_Copy

bfs_Copy

client

client

client

client

client

client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

Migration, client

Migration, client

Purge, clientbfs_Purge

Create a bitfile

Unlink a bitfile

Open a bitfile

Close a bitfile

Read data from a bitfile

Write data to a bitfile

Get bitfile managed object attributes

Set bitfile managed object attributes

Get bitfile managed object attributes (for an
open bitfile)

Set bitfile managed object attributes (for an
open bitfile)

Get (common) server managed object
attributes

Set (common) server managed object
attributes

Copy storage segments for a bitfile to the
next storage hierarchy level

Move storage segments for a bitfile to the
next storage hierarchy level

Reclaim space (i.e., purge segments)
occupied by a bitfile
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The Storage

API

Server provides APIs for
Clients

ss_BeginSession

ss_EndSession

ss_SSCreate

ss_SSUnlink

ss_SSRead

ss_SSWrite

ss_SSGetAttrs

ss_SSSetAttrs

ss_SSMount

ss_SSUnmount

ss_SSCopySegment

ss_SSMoveSegment

ss_MapCreate

ss_MapDelete

ss_MapGetAttrs

ss_MapSetAttrs

ss_VVCreate

ss_VVDelete

ss_VVMount

ss_VVUnmount

ss_VVRead

ss_VVWrite

ss_VVGetAttrs

ss_VVSetAttrs

BFS, SSM, client

BFS, SSM, client

BFS, client

BFS, client

BFS, client

BFS, client

BFS, client

client

Migrate, Repack,
SSM, client

Migrate, Repack,
SSM, client

Migrate, SSM,
client

Migrate, Repack,
SSM, client

SSM,

SSM,

SSM,

SSM,

SSM,

SSM,

SSM,

SSM,

SSM,

SSM, client

SSM, client

client

client

client

client

client

client

client

client

client

BFS,

SSM, client

SSM,

SSM,

SSM,

SSM,

SSM,

SSM,

SSM,

ss_PVCreate

ss_PVDelete

ss_PVMount

ss PVUnmount

ss_PVRead

ss_PVWrite

ss_PVGetAttrs

client

client

client

client

client

client

client

the following operations:

Description

Start a storage server session

End a storage server session

Create a storage segment

Delete a storage segment

Read data from a storage segment

Write data to a storage segment

Get storage segment managed object
attributes

Set storage segment managed object
attributes

Mount a storage segment and assign it to a
session

Unmount a storage segment

Copy storage segment to new segment on
different virtual volume

Move storage segment to new virtual
volume

Create storage map for a virtual volume

Delete storage map for a virtual volume

Get storage map managed object attributes

Set storage map managed object attributes

Create a virtual volume

Delete a virtual volume

Mount a virtual volume

Unmount a virtual volume

Read a virtual volume

Write a virtual volume

Get virtual volume managed object
attributes

Set virtual volume managed object
attributes

Create a physical volume

Delete a physical volume

Mount a physical volume

Unmount a physical volume

Read a physical volume

Write a physical volume

Get physical volume managed object
attributes
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ss_PVSetAttrs

ss_SSrvGetAttrs

ss_SSrvSetAttrs

ss_ServerGetAttrs

ss_ServerSetAttrs

SSM,client

SSM,client

SSM,client

SSM,client

SSM,client

Setphysicalvolumemanagedobject
attributes

GetStorageServerspecificmanagedobject
attributes

SetStorageServerspecificmanagedobject
attributes
Get(common)servermanagedobject
attributes
Set(common)servermanagedobject
attributes

The

API

Mover provides APIs for the following operations:

Clients Description

mvr_Read

mvr_Write

mvr_DeviceSpec

mvr_DeviceGetAttrs

mvr_DeviceSetAttrs

mvr_MvrGetAttrs

mvr_MvrSetAttrs

mvr_ServerGetAttrs

mvr_ServerSetAttrs

SS, PVL, client

SS, PVL, client

SS, client

SS, SSM, client

SS, SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

Read data from a device or devices

Write data to a device or devices

Load a physical volume

Unload a physical volume

Load message to device's display area

Flush data to media

Write tape mark

Read media label

Write media label

Clear portion of disk

Get Mover device managed object
attributes

Set Mover device managed object attributes

Get Mover specific managed object
attributes

Set Mover specific managed object
attributes

Get (common) server managed object
attributes

Set (common) server managed object
attributes
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The

API
Physical Volume Library provides APIs for the following operations:

Clients Description

pvl_Mount

pvl_MountNew

pvl_MountAdd

pvl_MountCommit

pvl_MountCompleted

pvl_CancelAllJobs

pvl_DismountJobld

pvl_DismountVolume

pvl_DismountDrive

pvl_Import

pvl_Export

pvl_Move

pvl_NotifyCartxidge

pvl_WriteVolumeLabel

pvl_AllocateVol

pvl_ScratchVol

pvl_DriveGetAttrs

pvl_DriveSetAttrs

pvl_VolumeGetAttrs

pvl_VolumeSetAttrs

pvl_QueueGetAttrs

pvl_QueueSetAttrs

pvl_RequestGetAttrs

pvl_RequestSetAttrs

pvl_PVLGetAttrs

pvl_PVLSetAttrs

pvl_ServerGetAttrs

pvl_ServerSetAttrs

client

SS, client

SS, client

SS, client

PVR

SS, SSM, client

SS, SSM, client

SS, SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

PVR

SS, SSM, client

SS, SSM, client

SS, SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

Synchronously mount a single volume

Begin creating a set of volumes to
automatically mount

Add a volume to the set of volumes to be
mounted

Mount a set of volumes

Notify the PVL a pending mount has
completed

Cancel all jobs associated with a
connection handle

Dismount all volumes associated with a

specific job

Dismounts a single volume

Forces the dismount of a specified drive

Imports a new cartridge into HPSS

Exports a cartridge from HPSS

Move a cartridge from one PVR to another

Notify the PVL that a cartridge has been
check in or out of a PVR

Rewrite the internal label of a specified
volume

Allocate a volume to a particular client

Return a volume to the scratch pool

Get drive managed object attributes

Set drive managed object attributes

Get volume managed object attributes

Set volume managed object attributes

Get PVL request queue managed object
attributes

Set PVL request queue managed object
attributes

Get PVL request queue entry managed
object attributes

Set PVL request queue entry managed

object attributes

Get PVL specific managed object attributes

Set PVL specific managed object attributes

Get (common) server managed object
attributes

Set (common) server managed object
attributes
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The Physical Volume Repository provides APIs for the following

operations:

API Clients Description

pvr_Mount

pvr_MountComplete

pvr_DismountCart

pvr_DismountDrive

pvr_Inject

pvr_Eject

pvr_Audit

pvr_LocateCartridge

pvr_SetDrive

pvr_CartridgeGetAttrs

pvr_CartridgeSetAttrs

pvr_PVRGetAttrs

pvr_PVRSetAttrs

pvr_ServerGetAttrs

pvr_ServerSetAttrs

pvr ListPendingMounts

PVL, client

PVL, client

PVL, client

PVL, client

PVL, SSM,
client

PVL, SSM,
client

SSM, client

PVL, client

PVL, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

Asynchronously mount a single volume

Notify PVL a requested mount has
completed

Dismount a single cartridge

Dismount the cartridge in a given drive

Accept a new cartridge into the PVR

Eject a cartridge from the PVR

Audit all or part of a repository checking
external cartridge labels when possible

Verify whether or not a PVR manages a
cartridge

Takes drives in the PVR on-line or off-line

Get a cartridge managed object attributes

Set a cartridge managed object attributes

Get PVR specific managed object attributes

Set PVR specific managed object attributes

Get (common) server managed object
attributes

Set (common) server managed object
attributes

List all currently pending mounts for the
PVR

The

API

ssm_Adm

Stora[je System Mana[_er provides APIs for the following operations:

Clients Description

client Perform administrative request on one or more

ssm_AttrGet

ssm_AttrReg

client

client

client

client

client

client

client

client

client

ssm_AttrSet

ssm_Checkin

ssm_Checkout

ssm_ConfigAdd

ssm_ConfigDelete

ssm_ConfigUpdate

ssm_Delog

servers (shut down, halt, mark down,
reinitialize, start)

Get managed object attributes

Register an SSM client to receive notifications of
data change in managed objects

Set managed object attributes

Accept checkins from data server clients

Accept checkouts from data server clients

Add a new entry to a configuration files

Delete an entry from a configuration file

Update a configuration file entry

Allow accept to the delog command
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ssm_DriveDismount
ssm_JobCancel
ssm_Cartlmport

ssm_CartExport

ssm_ResourceCreate

ssm_ResourceDelete

ssm_AlarmNotify
ssm_EventNotify
ssm_MountNotify

ssm_BitfileNotify
ssm CartNotify
ssm_DeviceNotify
ssm_DriveNotify
ssm_LogfileNotify
ssm_MVRNotify
ssm_MapNotify
ssm_NSNotify

ssm_PVNotify

ssm_PVRNotify
ssm_QueueNotify
ssm_RequestNotify

ssm_SFSNotify

ssm_SSNotify

ssm_ServerNotify

ssm_SsrvNotify

ssm_VVNotify
ssm_VolNotify
ssm_Migrate

ssm_Purge

client
client
client

client

client

client

Logging
Logging

PVL

BFS
PVR
PVL
PVL

Logging
Mvr
SS
NS

SS

PVR
PVL
PVL

Metadata
Manager

SS

NS, BFS, SS,
Mvr, PVL,

PVR, Logging
SS

SS
PVL
client

client

Dismountadrive

CancelaPhysicalVolumeLibraryjob
Importcartridgesinto thePhysicalVolume
Library
Exportcartridgesfrom thePhysicalVolume
Library
Createresources(physicalvolume,virtual
volume,andstoragemap)in theStorageServer
Deleteresources(physicalvolume,virtual
volume,andstoragemap)from theStorage
Server
Receivenotificationsof alarms
Receivenotificationsof events
Receivenotificationsof tapemountsand
dismounts
Receivebitfile datachangenotifications
Receivecartridgedatachangenotifications
Receivedevicedatachangenotifications
Receivedrivedatachangenotifications
Receivelog file datachangenotifications
ReceiveMoverspecificdatachangenotifications
Receivestoragemapdatachangenotifications
ReceiveNameServerspecificdatachange
notifications
Receivephysicalvolumedatachange
notifications

ReceivePVRspecificdatachangenotifications
ReceivePVL queuedatachangenotifications
ReceivePVL requestentrydatachange
notifications

ReceiveSFSdatachangenotifications

Receivestoragesegmentdatachange
notifications

Receivecommonserverdatachangenotifications

ReceiveStorageServerspecificdatachange
notifications

Receivevirtualvolumedatachangenotifications
Receivevolumedatachangenotifications
Movestoragesegmentsfor a bitfile to thenext
storagehierarchylevel
Reclaimspaceoccupiedby bitfiles
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ssm_Repack
ssm_MoveCart
client_notify

client
c_ent
c_ent

Performdefragmentationof physicalvolumes
Moveacartridgefrom onePVRto another
Notify clientsof alarms,events,mountrequests,
managedobjectdatachanges,andspecial
SystemManagerrequests

The following managed objects have attributes which may be queried (and

set) by SSM:

Name Server

Bitfiles

Bitfile Server (common)

Storage segments

Storage maps

Virtual volumes

Physical volumes

Storage Server specific

Storage Server (common)

Mover device

Mover server specific

Mover server (common)

Drive

Volume

Physical Volume Library queue

Physical Volume Library request entry

Physical Volume Library server specific

Physical Volume Library Server (common)

Cartridge

Physical Volume Repository server specific

Physical Volume Repository Server (common)

Security server

Log Daemon server (common)

Log Client server (common)

Structured File Server

The Storage
notifications

I AlarmsEvents

System Manager also receives the following type of
from the HPSS server components:

I Tape mountsData changes for registered object attributes

]ome of the more important management operations which may be

_erformed by the Storage System Manager include:

Import/create resources

Import cartridges

Export cartridges

Move cartridges

(from one PVR to another)

Audit PVR

Migrate

Purge

Repack

Delog

Set devices online/offline

Dismount drive

Start/stop/reinitialize/halt servers

Configure servers

Define/modify ACLs
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Migration/Purge provides APIs
API Clients

migr_StartMigration

migr_StartPurge

migr_MPSGetAttrs

migr_MPSSctAttrs

migr_ServerGetAttrs

migr_ServerSetAttrs

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

for the following operations:

Description

Start migration for a particular storage class

Start purge for a particular storage class

Get the migration-purge server attributes
i

Set the migration-purge server attributes

Get (common) server managed object attributes

Set (common) server managed object attributes
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Abstract

Applications at the Army High Performance Computing Research Center's (AHPCRC)
Graphics and Visualization Laboratory (GVL) at the University of Minnesota require a
tremendous amount of I/O bandwidth and this appetite for data is growing. Silicon
Graphics workstation are used to perform the post-processing, visualization, and animation
of multi-terabyte size datasets produced by scientific simulations performed on AHPCRC

supercomputers. The M.A.X. (Maximum Achievable Xfer) was designed to find the
maximum achievable I/O performance of the Silicon Graphics CHALLENGE/Onyx-class
machines that run these applications. Running a fully configured Onyx machine with 12 -
150MHz R4400 processors, 512MB of 8-way interleaved memory, 31 fast/wide SCSI-2
channels each with a Ciprico disk array controller we were able to achieve a maximum

sustained transfer rate of 509.8 megabytes per second. However, after analyzing the
results it became clear that the true maximum transfer rate is somewhat beyond this figure
and we will need to do further testing with more disk array controllers in order to find the
true maximum.

Introduction

The Silicon Graphics CHALLENGE/Onyx computer system has an enormous I/O
bandwidth that, to our knowledge, has not been fully explored. Researchers at the
AHPCRC are working on projects that require significant I/O bandwidth from these

computer systems [Woodward93]. We performed several experiments to find the total
sustainable I/O bandwidth of the CHALLENGE/Onyx computer systems that are key to
these projects. These high-end workstations are now achieving transfer rates that are

competitive with mainframe architectures and given their attractive price/performance may
potentially become the primary data servers in future high performance computing
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environments. Our goal was to find the I/O performance limits for large sequential
transfers on the SGI CHALLENGE/Onyx workstation.

The cost of putting together enough high-speed disk subsystems to push the limits of the
I/O bandwidth was expensive and remains so to this day. A fully configured

CHALLENGE/Onyx computer system could support 32 fast-wide SCSI-2 channels each

with 20 MBytes/second I of I/O bandwidth. Each SCSI channel would require a minimum

of 5 high performance disk drives to saturate the 32 SCSI channels sufficiently to find the
maximum I/O bandwidth. This would require a total of 160 disks which implies a great

deal of device management and bus contention if these devices are not managed properly.

Instead of using individual disk drives, we connected a single high-speed disk array
controller to each of 31 SCSI channels 2 on the Onyx system. These disk array controllers

are much easier to obtain than disks and fewer of them are needed due to their individual

high bandwidth. Furthermore, each disk array controller can easily saturate a single
fast/wide SCSI-2 channel so fewer devices are needed (one per channel) resulting in less

device management overhead.

Experimental Setup

Software

• IRIX Version 5.2, a UNIX SystemV Release 4 derivative

• Iv - The Silicon Graphics Logical Volume Device Driver

Hardware,

Onyx System Configuration
The system used in this experiment was a Silicon Graphics Onyx machine with the

following configuration:

• 20 150 MHz R4400 Processors (12 Processors for 8-way interleaved memory

configuration)
• CPU: MIPS R4400 Processor Chip Revision: 5.0

• FPU: MIPS R4010 Floating Point Chip Revision: 0.0

• Data cache size: 16 Kbytes
• Instruction cache size: 16 Kbytes

• Secondary unified instruction/data cache size: 1 Mbyte

• Main memory size: 512 Mbytes, 4- and 8-way interleaved
• 4 104 Power Channels

• 32 Fast-Wide Differential SCSI-2 channels

• 2GB System disk on SCSI channel 1

An Onyx system is basically a CHALLENGE with a graphics engine. Since this

experiment did not make use of the graphics engine in the Onyx at any time, these results

can be considered equally valid for a CHALLENGE.

IMBytes/second = 1,000,000 bytes per second.
2Only 23 of the 24 available channels were used due to a minor cabling oversight on the part of the

experimenters.
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Ciprico Disk Array and Diskless Array Description

The disk devices used in this experiment were Ciprico RF6710 disk arrays. Each RF6710

disk array is a RAID-3 device made up of 8 data drives plus 1 parity drive[Ciprico
93][Patterson89]. The number and type of disk arrays used were:

• 8 real disk arrays populated with Seagate ST12400N 2.5GB 3.5-inch disks.

• 23 diskless arrays populated with simulated Seagate Barracuda-2 2.5GB 3.5-inch
disks.

Because the number of disks required to populate 31 disk array controllers was more than

we could purchase or borrow, there were no disks on 23 of the 31 disk array controllers.
Instead, they were programmed to act like real disk arrays when accessed. The diskless

array controllers read and wrote data as any disk array would with the exception that data

written to the diskless arrays was thrown away and data read was always zero.

Consequently, no file system testing was possible and all testing was performed on raw
devices.

The diskless array controllers have geometry characteristics based on the ST 12400N disks

but performance characteristics based on an array populated with Seagate Barracuda-2

disks, the higher performance version of the ST 12400N disk. The data read from the array

is always zero with the exception of the first 512-byte block on the array which will be kept
in the controller memory and contains the volume header information.

The performance of the diskless array controllers depends on the type of access. For

purely sequential access the seek and rotational latencies are zero. This is because on array
controllers with real disks, sequential read and write operations make effective use of the

data caches on the individual disks thus hiding rotational and seek delays. For any other

access that involves a seek, an appropriate delay was inserted in the command processing

to simulate the seek and rotational latencies. The seek time is estimated to be proportional
to the seek distance and the rotational delay is set to half a revolution (4.1 milliseconds in

this case). The disk drive being modeled is a Seagate Barracuda-2. The seek simulation
feature was used for a different set of experiments but was not used in the M.A.X.
experiment.

For sequential read operations, the performance of the diskless arrays was only 4% higher
than an array disk real disks at moderate to large request sizes (Figure 1). Sequential write

operations on the diskless arrays performed nearly identically to the read operations. It

should be noted that the objective of this experiment was not to simulate a disk array but
rather to saturate the I/O subsystem. Therefore, these performance differences are more of
a benefit than a detriment.

Finally, the read operations on the real disk arrays perform better than write operations on
real disks even when the write caches are used (Figure 2). However, this difference seems

to be reasonably constant for small request sizes and becomes less significant at larger
request sizes.

77



20

18
e-
O

g

m
o

14

c

• 12
o

E 10
0

_D
a,,

8

16

10o

J :

1000 10000

Diskless Array

----'m---- Real Array

Request Size in KBytes

Figure l. Performance of read operations for diskless and real disk arrays for request sizes ranging from

32KBytes to 4096KBytes. At the lower request sizes, the diskless arrays are considerably faster than the

real disk arrays. However, the performance curves converge at request sizes of 512KBytes and higher.

20-

18-

16-

u 14

12 _ Reads

_ Writes
in
=E 10

.E 8

c 6
m

E
o 4
o

o. 2

0
0 100 1000 10000

Request Size In KBytes

Figure 2. Performance of a reads and writes versus request size on a real disk array.

operations are cached on each of the individual disk drives within the array.

The write

?8



Iic os
II 12or20-150MHzR4400

| I 3 or 5 CPU boards, 4

CPUsPooard

Memory

[tll 512MB4-and8-way
rtll interleaving
HII 2 Mc3Merno 

boards

1.2GBlsec E-BUS

I04 #0 I04 #1

li
104 #2 104 #3

]1,-I

s 8-15" SCSI Channels 16-23" SCSI Channels 24-31"

* These are Ordinal number assignments. Actual channel numbers were different.

t The_ array controllers have real disks attatched.

t? These array controllers have no disks attached. These are referred to as Diskless Arrays.

Figure 3. M.A.X. hardware configuration diagram.

Performance Evaluation Program

xdd - An I/0 performance measurement tool

xdd is a program developed to measure I/O performance by reading or writing large

amounts of data sequentially from a file or raw device. This program is intended to find

the upper limit of performance of an I/O subsystem under specific, well-controlled

operating parameters, xdd takes as command line parameters the target device to operate
on, the operation to perform (read or write), the request size to use for each read/write

operation, the number of read/write requests to perform, and the number of times to repeat

the test in order to obtain a good statistical average. Furthermore, xdd can be instructed to
limit the time to run each test in order to make the runtime more deterministic.

xdd provides three measures of I/O performance: (1) an aggregate transfer rate, (2) a table

of time stamps detailing each request, and (3) the number of I/O operations completed

during the test. Upon completion, xdd prints a single line of values indicating the request

size (in 1024-byte blocks), the average, high, and low I/O performance in units of 10 6-

bytes per second, the number of I/O operations, the average, maximum, and minimum

number of seconds to complete the specified number of requests, and the number of errors

that occurred during the test.

79



The first set of performancevalues is the aggregatetransferrate and canbe affected
erroneouslyby individual I/O operationsthat may have "stalled" due to some outside
influence. To help identify theseoutlying valuesa collectionof high resolutiontime
stampsare recorded in a file for further analysis. Before each I/O operation has been

initiated, a time stamp is recorded in an internal memory array. This array is pre-allocated

and page locked in order to avoid any paging interference that may negatively affect these

values. After xdd has completed all passes of the requested test, the time stamp values are

written to a file with header that contains the request size in 1024-byte blocks, the

resolution of the time stamp values, and the number of time stamp entries.

In an attempt to minimize the impact of virtual memory management and process

scheduling, the xdd text and data areas, the I/O buffer, and the time stamp table are page
locked during initialization to avoid any page faults or program swapping during the

performance test. The program also sets itself to a non-degrading, high priority in order to

reduce scheduling side effects on the measurements.

xdd uses a single page-aligned memory buffer large enough to handle a single request. An

I/O request to a single disk can range in size from 512-bytes up to a system defined
maximum. Currently, this maximum is set to 4 MBytes (4"1024' 1024 bytes), or more

appropriately, 1024 pages 3. The IRIX operating system allocates 1024 page mapping

registers for each I/O request but in order to map any arbitrary 4MB I/O request, 1025

page mapping registers are required to map requests that do not start on page boundaries.

Therefore, in order to issue an I/O request of 4MB it is necessary to page align the buffer to

insure it can be mapped in 1024 page mapping registers. 4

The Experiment

First, a test utilizing eight fast/wide SCSI-2 channels on a single IO45 was run to determine

if the 104 imposed any bandwidth limitations on the eight channels. The aggregate

performance scaled linearly as the number of independently fully utilized channels was
increased from 1 to 8. Hence, there are no bancJwidth limitations within an IO4.

The principle testing involved three basic access methods. The first access method was the
simultaneous independent access of 1 to 3 t disk array controllers. The second access

method used the Silicon Graphics Logical Volume (Iv) striping device driver to access 2 to

31 devices as a single logical device. The third access method was a variation of the first

whereby half the disk arrays would be reading data into memory while the other half

would be writing data from memory to disk. This last test was intended to measure any
bi-directional interference.

Each of these tests were performed using 4- and 8-way memory interleaving. The greater

the interleaving, the higher the effective bandwidth into memory. Figure 4 describes the

overall experimental test layout..

3The page size in IRIX 5.x is fixed at 4096-bytes.
4This problem with one to few page mapping registers exists in IRIX 5.2 but may not exist in later
releases.
5 The 104 card has 4 Fast/Wide SCSI-2 channels.
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Figure 4. The access methods and system memory configurations.

Due to time constraints, write operations were not tested for the 8-way interleaved

Independent Access and Logical Volume tests. However, it was observed in the 4-way

interleaved memory testing that the overall write performance tended to be slightly better

than the read performance. It is believed that this characteristic holds true for the 8-way

interleaved memory as well although it still needs to be verified.

Caveats

• In order to accommodate a shorter than expected testing schedule the 2-way

interleaved memory testing was removed.

• The fully configured Onyx with 4-way interleaved memory was able to

accommodate 20 processors (5 processor boards). However, the 8-way interleaved

memory configuration required 2 extra memory boards that displaced 2 processor

boards reducing the number of CPUs to 12 for this configuration. However, it
should be noted that this would not be necessary on a CHALLENGE server which

can be configured with 36 CPUs, 8-way interleaved memory, and 4 IO4s

simultaneously.
• The diskless array controllers were measured to be about 4% faster than the real

disk arrays at the top end of their performance curve (18.1 MBytes/sec versus

17.85 MBytes/sec).

• It is interesting to note that even with only 12 CPUs on the 8-way interleaved
memory configuration, the I/O rate did not appear to be limited by the CPU

performance.

Results

The results are presented by access method as described in figure 4. First the Independent

Access results are presented (figures 5-9) followed by the Logical Volume results (figures

10-16) and finally the Simultaneous Read/Write results are presented (figure 17).

!ndepcndcnt Access Results

The total bandwidth of the 4-way interleaved memory configuration was tested by

increasing the number of independently accessed arrays from 1 to 31 over request sizes

ranging from 64KBytes 6 to 4096KBytes. Disk array controllers were added one at a time

incrementing monotonically through each 104 until all channels were running. This

procedure was repeated for the 8-way interleaved memory configuration.

61 KByte = 1024 bytes.
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This accessmethodyielded thebestoverall performancewhencomparedto the logical
volume andsimultaneousread/writeaccessmethods. The 4-way interleavedmemory
configurationpeakedat 392MByteslsecondaccessing27 deviceswith a requestsizeof
768KBytes,droppingto 310 MBytes/secondasmoredeviceswereadded(figures 5-6).
The 8-way interleaved memory configuration performancewas measuredat 509.8
MBytes/secondaccessing31 deviceswith a requestsizeof 2048KBytes(figures 7-8).
Requestsize hasa definite effect on the performancewith requestsizes larger than
512KBytesperformingthebest(figure9).

Dueto timeconstraints,testingwaslimitedto readoperationsonly.

Logical V_olvme Read and Write Tests

This series of tests were run to measure the read and write performance of logical volumes
composed of 9 to 30 devices. Since a previous study [Ruwart93] characterized the read
performance of logical volumes composed of 2 to 8 devices it was decided to start where
that study left off in the interest of time.

The results of these tests are reported as Performance as a function of number of devices at
two different step sizes. The step size of a logical volume is the maximum amount of data
read off a single disk array in a single request. Thus, from the disk array's perspective, the
step size is equivalent to a request size because this is what the disk array sees as a request
from the host. The amount of data the xdd application actually requests from the logical
volume was intentionally set to the step size times the number of devices in the logical
volume in order to insure that all devices in the logical volume would be accessed for each
application I/O request in the most optimal manner.

As expected, the larger step size of 1024KBytes performed better than the smaller step size
of 256Kbytes (figures 10-15). However, the performance did not seem to depend on the
type of operation (figures 12 and 15) and only slightly on the memory interleaving (figure
16). The peak performance of the logical volume access method was about 240
MBytes/second.

Simultaneous Read�Write Tests

The simultaneous read/write tests were run to measure any bi-directional interference when

transferring data to and from different groups of I/O devices simultaneously. The
motivation behind this testing has to do with large multi-media servers that must sustain a
large bandwidth in and out of a system.

The results show a peak performance of 482 MBytes/second accessing a total of 30 disk
arrays: 15 reading plus 15 writing using a request size of 1536KBytes and 8-way
interleaved memory (figure 17). This is 97% of the straight read performance of 30
independent disk arrays. The 3% difference is attributed to the slightly lower performance
of the individual disk array write operations (see figure 2). Since 15 of the 30 devices

were writing data in the simultaneous read/write case, the aggregate performance of all 30
disk arrays is less than if all 30 devices were reading.
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Conclusions

The M.A.X. experiment demonstrated a sustained performance of 509.8 MBytes/second

reading data from 31 independent disk arrays simultaneously into an 8-way interleaved

memory subsystem on the CHALLENGE/Onyx system. However, the maximum

achievable transfer rate was not observed because 31 disk arrays were not enough to

saturate the I/O subsystem. This statement is based on the results for the 4-way interleaved

memory configuration whereby the performance hits a maximum and degrades as more

devices are added. This effect was not observed for the 8-way interleaved memory

configuration. Therefore, we believe that the actual maximum I/0 performance of the
CHALLENGE/Onyx is greater than 510 MBytes/second.

The logical volume testing showed a maximum transfer rate of approximately 240
MBytes/second for reading or writing. The memory configuration did not have any effect

on the overall performance of any logical volume configuration.

Finally, the simultaneous read/write tests demonstrated a maximum performance of 482

MBytes/second using 30 disk arrays: reading from 15 while simultaneously writing to 15
others. Since this performance is measured over 30 devices, it is estimated that 31 devices

would provide an additional 16 MBytes/second for a total sustained performance of 498
MBytes/second.

The M.A.X. experiment was a success and exceeded our expectations inasmuch as we

expected to observe a peak performance less than 500 MBytes/second. Had we known

that the peak would have been higher we would have designed the experiment to utilize far

more disk array controllers and SCSI-2 channels. The Silicon Graphics

CHALLENGE/Onyx system architecture has proven to have a very efficient I/O
subsystem that has a tremendous usable bandwidth.

89



Future Work / Related Work

• Perform 8-way interleaved memory testing on a CHALLENGE and more

processors, 6 104's, and 48fast/wide SCSI-2 channels with a theoretical peak

bandwidth of 960MBytes/second.

• File System Testing with 160 Real Disks and�or 32 Real Disk Arrays

• Testing with Multiple lO0-MByte/second HiPPI and�or Fibre Channel Devices
• Bit rate consistency testing for multimedia applications
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Abstract

In the not too distant future, programs such as NASA's Earth Observing System,
NSF/ARPA/NASA's Digital Libraries Initiative and the Intelligence Community's (NSA,
CIA, NRO, etc.) mass storage system upgrades will all require multi-petabyte (or larger)
distributed storage solutions. None of these requirements, as currently defined, will meet
their objectives utilizing either today's' architectural paradigms or storage solutions.
Radically new approaches will be required to not only store and manage these veritable
"mountain ranges of data ", but to make the cost of ownership affordable, much less

practical in today's (and certainly the future's) austere budget environment/

Within this paper we will explore new architectural paradigms and project systems

performance benefits and S/laB of information stored. We will discuss essential "top down"
approaches to achieving an overall systems level performance capability sufficient to meet
the challenges of these major programs.

Foreword

Today's data center is growing at a rate of per year of 40% CAGR, without even factoring
in the impact of new multi-media and imagery-on-demand applications. This means that
someone with a 10 TB problem today will have a 100 TB problem in 2-3 years and a multi-

Petabyte problem in 7-10 years. Many of the large data centers found today have multi-
PetaByte problems already. Based on this growth new exponential factors must be defined
in order to understand the magnitude of the problem. Based on new exponent prefixes
defined in the past two years, we have compiled a listing for reference throughout our
discussions.

TeraByte: 1012 Bytes of bitfile data
PetaByte: 1015 Bytes of bitfile data
ExaByte: 1018 Bytes of bitfile data
ZettaByte: 1021 Bytes of bitfile data
YottaByte: 1024 Bytes of bitfile data
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Near-Term Programs with Storage Requirements in Excess of 1 PetaByte

Within the federal end-user community today there are a number of requirements for multi-
PetaByte archival systems already. A number of these will be based on years and years of
data gathering by numerous Earth resources and imagery satellites producing warehouses
of bitfiles which will be made available to thousands of researchers worldwide. For

purposes of our discussion we will profile a sampling of the more visible ones.

NASA EOSDIS: Part of NASA's "Mission to Planet Earth", EOSDIS is a 13 site (8
directly associated with the program and 5 affiliated) distributed archive and data center for
earth science data. This program has a data ingest, product generation & data distribution
rate in excess of 1000 GB per day, with a 15+ year life span i.e. 11 PetaBytes anticipated
over the program's life.

NASA EDOS: All incoming Level 0 data from EOS and International Partner satellite
platforms is collected at this site in WV for archiving and processing into higher order data
products. It is then distributed to the 13 EOSDIS sites (as well as IP sites upon request).
Level 0 and higher order data products in excess of 1 TB per day will be archived,
processed and distributed from this site over the 15+ life span of the program. Total archive
capacity will exceed 1 PB during this time.

NSF/ARPA/NASA Digital Libraries Initiative: Envisioned as the "Data Malls on

the Information Superhighway" these distributed information infrastructure servers will

provide fast access to thousands of TB's of data, and will open the infrastructure up to the
general public. They are intended to capture, store, distribute and provide access to every
type of bitfile data available from public and private sources. Given the scope of this plan it
is envisioned that this will comprise hundreds to thousands of PB's over its useful life.

Nil - "High Resolution Video on Demand Services": As one of the most visible
components of the National Information Infrastructure concept, this application has been
embraced by the entire telecommunications and computer industries as well as capturing a
significant share of the NII federal funding dollars available, and the public's mindshare as
well.

Using the most advanced image compression techniques available today can only reduce
the large size of a "digital movie" to 10's of GB's (assuming higher resolutions than found

in conventional broadcast today). This nets out to a requirement of multiple PB'sin key
VOD locations serving major metropolitan areas across the country (each Blockbuster
Video location currently houses in excess of 10,000 feature length movie titles).

The Intelligence Community's Consolidation of DLsparate Archives: Hard to
describe in any other terms, the United States' Intelligence Community (CIA, NSA, NRO,
DIA, etc.) is faced with dilemma of providing higher and faster levels of service to its end-
users with less capital to work with (dollars and personnel). In total, the IC ingests over 4
TB per day from classified sources alone (1 TB+ per day from images that are
approximately 1 GB each), not to mention the thousands of unclassified sources worldwide
that are routinely accessed. In trying to meet the needs of their end-users they must respond
to numerous real-time queries across disparate resources. All combined, the IC has in
excess of 10 PB of data already archived, with this growing at a much higher rate than that
of the rest of end-user community (60+% CAGR).
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Current Storage System Architectural Paradigms i.e."Multi.TeraByte Class"

Types

• Direct Connected Peripherals i.e. "The Mainframe Era"
• Stand-alone Data Servers i.e. "The Client/Server Mantra

• Network Attached Peripherals i.e. "The NSL Approach"
• IEEE Mass Storage Systems Reference Model i.e. "The Open Systems Standard"

Network IfF Dedicated CPU

DASD Drive

1/2" Tape Drive t

|

Tape Drive(s)

w/Robotics

Figure 1" "TeraByte Class" Data Server

• Overview

Systems conforming to the first two of these types of architectural paradigms (Mainframe
attached and Client/Server) are essentially CPU Centric and appear as a centralized

repository of bitfiles to the outside world. Bitfiles may be distributed out over a network to
various clients, but still originate from a centralized location. The IEEE Mass Storage
Reference Model promises to break this scheme into either a distributed or quasi-distributed
one, but all implementations fielded to date behave in a centralized manner and will

potentially fall apart when distributed.

In short, these systems all suffer from the same type of performance limitation; that of
acting as a single point of access for all classes of service. The controlling/serving CPU can
only maintain one connection/DMA access at a time in practical terms and even through the
use of multiple CPU's and multi-threaded OS's one can only maintain a small number of
transfers simultaneously (mostly due to shared memory and operating system software

limitations) appearing on an effective basis as a single point of access to the network.
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Systemsbasedon theNSL/HPSSparadigm(networkattachedperipherals)aredesignedto
support high-speedtransfers of large bitfiles, but do not translate to a distributed
environmentandarefar toocostly for themainstreamof theend-usercommunity.For this
reasonwehaveclassifiedthemaspartof theTeraByteclass.

Network Bus

WS Super-

Cluster

DISK ATM/FC/HiPPI Solid State
Disk

Array Switch Fabric

Wide Bandwidth
Interconnects

Helical

Scan Tape

Archive

Device Control Bus

File Switch Engine
Servel

Figure 2: "The NSL/HPSS_Paradigm"

Concepts for Future Storage System Architectural Paradigms: "Multi-
PetaByte and Beyond"

In order to meet the challenges of managing multi-PetaByte distributed archives we need to
think beyond the current COTS mindset and explore new approaches altogether, some
based on concepts being used in parallel computing today (using however, COTS
components where practical). We feel that a parallel architecture eliminates much of the
problem encountered with "single point of access" found in traditional architectures of the
day. Much of what we will present is still in the early stages of development, but does
represent a logical approach to the problem at hand.

• Distributed Cluster-type

This architecture envisions an environment where a clustered array of servers are
interconnected via a LAN to a series of data repositories. These servers are in turn
connected to a WAN and serve clients and other servers distributed throughout the
enterprise. Each repository contains multiple peripherals and robotics assemblies for
contention free search and access of bitfiles. Using fast packet technology, the system is
capable of storing and retrieving bitfiles within the repositories at very high packet rates,
but at a relatively low cost. Utilizing this type of architecture allows for many points of
access, while retaining the benefits of using commodity type technologies.
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Data Repository X

LAN

Figure 3: - A Distributed "Cluster -type" O uery/B_

• Scalable Parallel

This architectural approach borrows much from today's scalable processors i.e. shared
memory parallelism. The system is essentially demand driven and each process
automatically adapts itself to the number of resources (CPU's and peripherals) available to
the user at the time of the request. This architectural approach is totally scalable and higher

levels of performance can be obtained by merely adding more CPU's and peripherals i.e.
forward extensibility without obsolescence.

ATM WAN

Figure 4: - "A Scalable Parallel Query/Bltfile Server"
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• Dynamically Configurable

As implied by its name, this architectural approach is the most flexible in meeting "data on
demand" requirements. The system configures itself dynamically depending upon end-user
demand and resources available. During times of extremely high demand the system
configures itself as highly parallel, while during periods of light-medium demand it acts as
a clustered resource. The benefits of this approach are that it eliminates single-node
bottlenecks (the slowest component of a distributed system throttles the performance of the
entire system) and acts as a high-availability resource under all load conditions.

ATM LAN

Figure 5: - "A Dynamically Configurable Ouery/Bitfile Server"

The concepts that we have discussed here are by no means new or all encompassing.
Rather, they are shown as examples of wide departures from the status quo which seems to
pervade the mindset of today's systems planners and developers as the only approach
available to meet the challenges set forth. We expect that as everyone's eyes are opened

wider to both the scope of the challenge as well as the tools available to respond to it, that
new mindsets will develop.

Additional Considerations

Adoption of new hardware architectural paradigms alone will not suffice to meet the
challenges of these ever increasing requirements. We will need to accomplish the following
in parallel with these developments;

• Adopt Object Driven files systems for faster query, search and access to bitfiles
• Continue to develop "bandwidth on demand" driven internetworks and storage
peripherals
• Eliminate all "single point of access" failures and bottlenecks
• Utilize distributed Metadata and Browse data db's

• Migration to higher order data transfer and communications protocols
• Achieve continuing incremental reductions in Unit Storage Costs with attendant increases
in Capacity-per-physical unit and vastly improved data reliability.
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• Achieve continuing incremental reductions in Unit Storage Costs with attendant increases
in Capacity-per-physical unit and vastly improved data reliability.

Cost Projections & Realities:

Based on the use of conventional architectures and components, we project that

most end-users are looking at fielded system costs of $40-60M per PetaByte, with the

majority of these costs being centered around expensive CPU's, network fabrics and high-
end peripherals. This level of cost is far too high for most, if not all budgets today and
does not include the manpower or materials necessary to operate and maintain these

systems over their useful life (a major component of total cost).
We believe that in order for the key programs discussed earlier to be achievable,

that costs in the $10-20$/PetaByte range must be achieved. This can only be realized by

embracing radical new approaches similar to what we have outlined.

Conclusions and Recommendations:

Current architectural approaches "bottom out" when tasked at multi-PetaByte levels

(access, bandwidth, file management, cost, etc.).
Scalable and dynamically Configurable hardware architectures off significant

promise in overcoming many of these limitations.
In addition, exponential increases in hardware, software and protocol efficiencies

are mandated to meet this challenge as well.
In short, "The ways of the past must give way to the needs of the future" i.e. the

familiar and comfortable path of the present will not suffice.
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We live in a world of increasingly complex applications and operating systems.
Information is increasing at a mind-boggling rate. The consolidation of text, voice, and
imaging represents an even greater challenge for our information systems. Which forces
us to address three important questions: Where do we store all this information? How do
we access it? And, how do we protect it against the threat of loss or damage?

Introduced in the 1980s, RAID (Redundant Arrays of Independent Disks) represents a
cost-effective solution to the needs of the information age. While fulfilling expectations for

high storage, and reliability, RAID is sometimes subject to criticisms in the area of
performance. However, there are design elements that can significantly enhance
performance. They can be subdivided into two areas: 1) RAID levels or basic architecture.
And, 2) enhancement schemes such as intelligent caching, support of tagged command
queuing, and use of SCSI-2 Fast and Wide features.

Host-independent hardware-based RAID
There are three types of disk arrays: 1) hardware-based, host-independent; 2) hardware-
based, host-dependent; and, 3) software-based, host-dependent. Software- based disk
arrays are very taxing on the CPU because most of the processing is done in the host
computer. On the other hand, hardware-based, host-dependent RAID systems fall short by
foregoing the host-side benefits of SCSI.

Therefore, this article will focus on host-independent, hardware-based disk arrays as they
typically provide significantly improved overall performance (as measured by throughput

and I/Os per second).

RAID levels

RAID 0 uses disk striping to distribute data evenly across all the disks in the array. There
is no redundancy or duplication of any data, therefore data-security in minimized. The
upside of this scheme is that it provides very high data transfer, and high I/0 rates for both
read and write. Supplemented with a well implemented data integrity scheme, RAID 0 can
significantly enhance performance in most general applications.

RAID 3 subdivides and distributes each data sector across all data disks, with redundant

information stored on a dedicated parity disk. Data can be accessed on different drives
concurrently, thereby offering very high data transfer rates, but no gains in I/O rates.
RAID 3 is a great performance enhancer for large blocks of data such as video and
multimedia type applications.

RAID 5 distributes data sectors as with disk striping, with additional independently

computed redundant information. It significantly enhances data transfers and I/O reads,
but penalizes writes. RAID 5 offers great performance in most business and database
applications.
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OtherRAID levelsthathavebeenproposedtoenhanceperformance,but they typically rely
on complex and costly proprietary structures which have not gained broad market and
industry acceptance.

Tools Available in RAID Systems to Enhance Performance
A well constructed caching algorithm is essential to a high performance RAID system.
This article will cover methods to get the most out of caching.

Intelligent caching
Data transfers can be greatly improved by using adaptive techniques to allocate the optimal
amount of cache memory to various read and write command blocks. Varying these
segment block sizes will improve cache performance.

Caching and look-ahead
A look-ahead scheme ensures that when the host CPU requests data, the RAID caching
algorithm provides the requested data. Look-ahead goes one step further and reads
sequential data immediately following the request. That sequential data is written to a cache
block on the array controller. If the host CPU requests that subsequent data, it can retrieve
it from the cache nearly 1003 times faster than it normally would.

Studies have shown that 55 to 70 percent of all disk requests are sequential. As a result,
well designed cache look-ahead schemes keep track of the sequential nature of data and
continuously fill the cache with new data based on sequential patterns encountered in user
storage activity.

Look-ahead caching eliminates the seek time and latency associated with non-cache
transactions and keeps track of the type of drive activity (sequential versus non sequential)
as well as the length of time a block of data resides in cache without being requested (FIFO
implementation).

Effective array level caches typically range from 8 MB to 128 MB with the
cost/performance ratio being optimized for most broad based applications in the 16 to 32

MB range.

It is worthy to note that the disk array's cache complements and greatly enhances the less
sophisticated system level cache and smaller drive level caches found in most current hard
disk drives.

Caching caveats
Caching offers significant performance gains in a disk array architecture. However, in
order to maintain the RAID system's data integrity and fault tolerance requirements, it is
critical that the data present in the cache during a system failure be gracefully recoverable.

This can be done by incorporating a UPS (uninterruptible power supply) in the RAID
system and providing adequate firmware to flush the cache and carry through the rebuild
process without data loss.

Multi.tasking en vironments
In a multi-tasking environment such as UNIX, where a disk array typically services
multiple CPU operations, the array must divide the available time among all operations,
even though each might be requesting data sequentially from the disk.
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Withoutanadequatecachingimplementation,theread/writeheadsin thearraywill typically
seek from one location to another in order to service multiple data requests. With caching,
the number of seeks required will be significantly reduced because of segmented cache.
After the first seek and read has been performed for each cache, the disk array's cache on
board typically takes over and transfers the data directly from the various segments of
cache memory.

Tagged Command Queuing
Tagged command queuing (TCQ) allows the host to send multiple commands (from 8 to 64
depending on the implementation) to the disk array for processing. These commands are
then tagged and can be reordered in the queue to reduce the time it takes for drives in the
array to 1) access specific blocks of data (minimize latency); 2) optimize the use of
sequential data; and, 3) increase the number of cache hits, and optimize the execution of a
command stream. TCQ is most beneficial in environments which support that feature (such
as Unix).

Handling large blocks of data
Another bottleneck in disk array performance has to do with the transmission of large
quantities of data. Typical examples are emerging multimedia and related full motion video
and video-on-demand applications, as well as traditional multi-tasking and LAN based
database and general server applications.

An intelligent way to address these challenges is to eliminate the REQ/INIT/ACK CPU
intensive steps usually present between blocks of data by implementing intelligent DMA
(direct memory access) techniques.

Similarly, it is possible to reduce the number of interrupts handled during the processing of
an I/O request, freeing valuable CPU time. The result is faster throughput to the system,
especially for large blocks of data, such as those described above.

SCSI as a bottleneck

The SCSI standard alone can be a potential bottleneck to the RAID disk array (SCSI Fast is
only 10 MB/sec. versus SCSI-2 Fast and Wide at 20 MB/sec.) As previously explained,
the best disk array performance can usually be obtained in hardware-based, host
independent implementations.

Most of the methods we have discussed offer significant enhancements and overcome the

performance penalties inherent to the other two aspects of RAID: better data integrity and
lower cost. With these tools, a hardware-based subsystem can come very close to the
sustained throughput limit of SCSI-2 Fast and Wide (ie 20 MB/sec.).

The future

SCSI is becoming a limiting factor in our performance requirements. Full-motion video,
multimedia, and increasingly complex business applications being right-sized from the
glass room to personal computers and workstations--will need significantly more power
than SCSI can harness.

Intel's P-6 and Motorola's future PowerPC chips will provide the needed processor
power. RAID can and will provide high bandwidth storage. What is missing is a faster,
more flexible and cost effective interface standard.
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Faster Interface Standards

Fiber channel's Gigabit/sec. throughput, under any of its current four or five proposed
implementations, shows every sign of fulfilling this promise in the next few years.

Fiber will tie in processor and RAID storage under one high power interface standard and
provide us with the high-speed highway needed to support our exponentially growing
information needs.

RAID technology is capable of offering the high performance needed to access and process
large amount of information, when properly implemented. There are many factors that
contribute to RAID performance. The key is to assess the specific storage and application
requirements, and select the most appropriate RAID scheme. Once this is done, the RAID
system can offer significant performance gains over JBOD (Just A Bunch of Drives) by
using the tools such as the ones discussed here.
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Abstract

An R&D division of the National Library of Medicine has developed a prototype system

for automated document image delivery as an adjunct to the labor-intensive manual

interlibrary loan service of the library. The document image archive is implemented by a

PC controlled bank of optical disk drives which use 12" WORM platters containing

bitmapped images of over 200,000 pages of medical journals. Following three years of

routine operation which resulted in serving patrons with articles both by mail and fax, an

effort is underway to relocate the storage environment from the DOS-based system to a

UNIX-based jukebox whose magneto-optical erasable 5 1/4" platters hold the images.

This paper describes the deficiencies of the current storage system, the design issues of

modifying several modules in the system, the alternatives proposed and the tradeoffs

involved.

Background

The Lister Hill National Center for Biomedical Communications, an R&D division of the

National Library of Medicine, has developed a prototype system for the automated

retrieval and delivery of document images as an adjunct to the manual interlibrary loan

service of the library. The system is integrated with the library's existing interlibrary loan

system and is transparent to the requester. Since April of 1991, the system has retrieved

from optical disk storage and delivered to patrons the images of over 27,000 articles by

fax and mail. While the current operation has been scaled down, the system continues to

deliver about 450 articles per month and about 550 page images are added to the image

archive per month.

The prototype system [1] consists of several DOS-based workstations connected to a

LAN and supported by a Netware 3.11 file server. The workstation functions include

document capture, image quality control, document tagging, document image archive,

communications gateway and document delivery. Most of the software to support these

functions was developed in house. The file server serves as a temporary image store until

captured images have passed quality control, and it stores the several databases that the

system uses to track images and requests.
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The image archive is implemented by a bank of four 12" WORM optical disk drives

connected via SCSI-1 to a PC. The vendor-supplied soitware that mediates the operation

of the drives configures the workstation as an optical disk server that communicates with

other PCs on the network via the IPX protocol used by Netware. Thus, by logging into

the optical disk server, other PCs on the network can write and read image files directly to

and from the optical platters. All of the files on the optical disk server appear to the PC to

be located at a single drive letter. The archive currently holds over 200,000 image files on

15 12" platters, for a total archive of approximately 15 Gigabytes. Because there are more

active platters than there are drives, software has been written to effect a "human jukebox"

for manual platter exchange.

Optical Disk Server Problems

The four WORM drives of the archive workstation range from 2 to 9 years old and all

have been in continuous operation since delivery. These aging drives are no longer

supported by the manufacturer. Although maintenance, troubleshooting and some repair

and replacement are performed by in-house technicians, parts and high-level repair must

be obtained from a third party. Compatible and reliable media are also becoming difficult

to obtain. In addition, the frequent manual exchange of platters is taking its toll on both
drives and media.

At the time that the optical disk server software was purchased, there were few

commercial options for network access to 12" WORM drives from PCs. The optical disk

server sottware was selected because it met our minimum requirements for remote access

to optical platters and included a small set of C-callable functions that our in-house

programs could use to obtain information about the status of the drives and platters.

However, this DOS-based sottware has not proven to be robust when handling multiple

requests and error recovery is generally inadequate, requiring frequent intervention by the

technical staff The original manufacturer of the optical disk server software sold their

license to a company overseas with no support staff in this country. The new company has

not addressed the reliability and error recovery issues, and their new version of the

software cannot write to platters written to by earlier versions.

The optical disk server continues to function adequately at its current low usage level, but

at the cost of several man-hours of labor per week. There is also the threat of irreparable

breakdown of one or more of the aging, irreplaceable optical disk drives. For these

reasons, we are exploring the transfer of the image archive to a more reliable, flexible

optical disk server employing current technology.
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Rationale

The degree to which images in the archive are accessed is a function of their age, the

probability of more recently published documents being accessed being higher than for

older documents. One approach to solving the archive problem is to permanently retire

disks containing older documents, and have only three or four platters permanently placed

in the drives. These would then contain those documents that have the highest probability

of being requested, thus reducing wear on drives and media from manual platter exchange.

This approach might extend the life of the system for a short time but is not likely to

significantly reduce the amount of staff labor needed to maintain the system.

There are good reasons to preserve the entire image archive. These images represent a

large investment in equipment and labor. Although the development and operation of the

prototype system largely answered the original research questions regarding cost,

performance and image quality, the database of document images has potential value for

future research. The archive could be used in projects addressing document image

processing, image compression, file format conversion, image transfer, image access, or

mass storage. It could also prove useful in testing components of improved document

image delivery systems.

For these reasons, an effort has begun to relocate the entire image database from the

DOS-based system to another system of optical media in which media are automatically

exchanged when necessary and multiple network communications are handled reliably.

New Image Storage Requirements

In the new image store, all active images should be accessible from the current document

delivery system without manual intervention. To be available to the widest number of

future projects, the image database should be accessible from UNIX platforms, which

normally communicate via TCP/IP, as well as from the many Netware-based PCs in the
division. Internet access to the database would make it available to collaborators at other

sites as well. These requirements are met by the division's HP 100 optical disk jukebox [2]

in conjunction with the Netware NFS Gateway software [3]. The four-drive jukebox has a

current near-line capacity of 93 Gigabytes, expandable to 186 Gigabytes. It is connected

to a Sun 670MP and controlled by software from Alphatronix. Each platter side appears

as a UNIX file system and is directly available to any computer to which it is exported.

Netware NFS Gateway software supports NFS mounting of UNIX file systems to

Netware servers, where the file system is available to Netware users as a Netware volume.

The jukebox also supports other projects. Should insufficient space be available for the

image database, other commercial solutions are appearing. It is expected [4] that

expandable network storage products will soon emerge that will connect directly to the

network and will offer storage that is independent of the operating system. There is one
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optical disk jukebox system available now that connects directly to the network and

supports both TCP/IP and IPX/SPX communications [5].

Software Requirements

In an ideal world, the image database could be moved to a new image store with no effect

on the operation of the current document delivery system. However, because much of the

in-house-developed software is tightly integrated with the current optical disk server

software and the operation of the "human jukebox", no simple substitution is possible. Any

change in image store will require modifications to several of the modules that comprise

the system. Software modification is not a casual matter. Several of these modules are

written for a C compiler that is no longer supported, while others are written for an older

version of Microsoft's C compiler. All these modules use a no-longer-supported library of

routines to interact with the databases that resolve the location of image files

corresponding to journal articles.
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Figure I. Modules of the current system that access the image store.

Figure 1 illustrates the software modules of the current system that interact with the image

store and the libraries that are used to facilitate use of the optical disk server. The archive

module moves the page images of a journal issue from the temporary store on the Netware

server to permanent store on a WORM platter. For each issue, the tagging module adds

operator-supplied data that identifies the page images that correspond to individual articles

in the issue. An operator can use the browsing module to match articles with requests
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containingambiguousor insufficientinformationfor thesystemto automaticallyselectthe
article.The output servercopiespageimagefiles correspondingto an article from an
opticalplatterandeitherfaxesthe imagesto therequesteror printsthe articlefor delivery
bymail.All but the outputserverinteractwith anoperator.

Ultimatelyall readsandwritesto the optical disk server are straightforward, but modules

must first determine if the required platter is in a drive. If it is not, human intervention

must be invoked through the module labeled "human jukebox" in the figure. In addition,

before archiving a journal issue, the archive module must determine the remaining space

on a platter to be certain that there is sufficient space for all page images of the issue.

Since a file/platter locking feature is not part of the commercial optical disk server

software, all modules use the special optical.lok file to prevent one module from

requesting the operator to remove a platter that another module is using. Although three

of the modules share a few library functions, as shown in Figure 1, in general each module

is responsible for how it accesses files on the optical disk server.

Minimum modifications to the software to accommodate a new image store implemented

by an optical disk jukebox will have to remove references to operator intervention and to

the functions that obtain information about drive and platter status.

Other issues

File format and image organization: The page images in the current system are

compressed using the CCITT Group IV algorithm. Each page is stored as a separate file

with no header. All of the page images from one journal issue are stored in one

subdirectory. The metadata that describes which page images are associated with each

article in the issue are stored in one file in the subdirectory with the images. The

subdirectory name is a number, assigned consecutively at the time the issue is archived

Thus, any module using images as they are currently stored must obtain information from

the system database files to find the path to a given issue, must be able to interpret the

metadata file to find pages for a given article and must have a priori knowledge of the

image file format. To make the image database not only available to a wider audience, but

also self-explanatory, changes in file format and organization will be considered.

Access time: Very fast image retrieval is not critical to the system supporting interlibrary

loan since the recipients of the articles are not on line waiting for delivery. Earlier studies

of jukebox performance [6] found that the time to retrieve one article is about two

seconds when the platter on which the images resides is in a drive. When the platter is not

in a drive, the retrieval time becomes a function of the number of other requests waiting

for service from the jukebox. In general, retrieval times from the jukebox are sufficiently

fast to support the interlibrary loan prototype system. If the image database is used for

some other project for which inherent retrieval times from the jukebox are too slow,

apparent speed can be improved by designing a prestaging algorithm specifically for the

application.
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Backup: Once each 12" WORM platter of the prototype system is filled to 95% of its total

capacity, a duplicate platter is made using in-house software, and a new platter is

formatted for succeeding documents. Should a platter fail, which has happened, the

backup can be used in its place. To date, the magneto-optical (MO) media in the jukebox

have proven to be reliable. Since it is unlikely that an entire MO platter will fail, it may be

sufficient to back up the document files to tape in case individual files should become

corrupted. The important issue of effective backup procedures has yet to be fully
addressed.

Platter spann#tg: The software controlling the jukebox supports platter spanning [7].

With spanning, up to 16 platter sides can be merged to become one filesystem of about 4.5

Gigabytes. The filesystem can be exported to the Netware server and made available to PC

users as a single Netware volume. The current image database would require more than
three such volumes.

Proposed Solutions

In addition to the hardware and software requirements discussed earlier, the design of a

new image store should include as goals: a) minimum investment of labor and equipment,

and b) maximum flexibility to allow future changes to the image store and future use of the

image database. Meeting these goals involves tradeoffs. Minimum investment in labor and

equipment implies minimum software modifications to the current document delivery

prototype system and the use of current storage devices, namely the HP jukebox.

Maximum flexibility to position the database for continued and future use may require new

hardware procurements for the image store and extensive changes to the current software.
These solutions are discussed below.

Solution 1: For Minimum Cost

To minimize software modifications, the new image database would be organized exactly

like the current database, with the images of each issue residing in an arbitrarily named

subdirectory, accompanied by a Cryptic file containing data used to connect individual

pages to the respective articles in the issue, and using a headerless file format for the

images themselves. To minimize modifications, the current conglomerate of outdated

compilers, databases and user interfaces would be preserved. The result may support the

document delivery system for several years, but would provide other applications only

awkward access to the images. Furthermore, should the image database require another

physical move, to be distributed among several servers, for example, the software would

likely have to be modified once again.

Figure 2 illustrates how modules of the document delivery system that access the image

store would be organized in a system designed to minimize labor and equipment costs. In
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this scheme, a selected subset of the images are moved to platters in the HP optical disk

jukebox connected to the Sun host. Sixteen platter sides in the jukebox are spanned to

create one 4.5 Gigabyte filesystem that is exported to the Netware server. Only the more

heavily requested issues would be copied to the new image store, with one Gigabyte

reserved for about 2 years worth of additional documents. The remaining images are

permanently retired. Files in the new filesystem are organized exactly as in the current

document delivery system. The entire filesystem appears to the document delivery

workstations as one Netware volume which is mapped to a single drive letter, just as the

current optical disk server is accessed though a single drive letter. Functions in the

iwmount.lib library, which were previously used to operate the "human jukebox", are

replaced by functions bearing the same name whose only purpose is to return a good

status. In this way, the tagging and browsing modules need not be rewritten, but only

relinked to the new library. Because the archive module is so tightly integrated with the

current optical disk server and includes functions, such as determining available space on a

platter, that are not in the iwmount.lib library, it must be rewritten to support the same

functionality with respect to the jukebox. The required information can be obtained

through functions in the Netware Soi_ware Development Kit (SDK). Since the SDK

supports Microsoi_, but not Lattice compilers, the new archive module is written for

Microsoit. The output server module may not need to be rewritten or relinked. Because it

is intended to operate automatically, even during periods when an operator is not

available, it does not directly access the "human jukebox" functions.

Key

_ ProgramsJTunctions

l Iubr'_

Lattice C

(l_) Microsoft C

Figure 2. Proposed modules for minimum cost solution.
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Solution 2: For Maximum Flexibility

To maximize flexibility and access, the image database would be reorganized for easy

management and for intuitive navigation to image files that have a standard file format and

header. The path to the subdirectory containing the images for one issue includes a three

letter code identifying the journal title and other characters to indicate volume and issue.

With each issue there is an easily interpreted text or database file containing data linking

page images to articles. All images reside in an optical disk jukebox with sufficient

capacity to store the existing database plus at least five years expansion. The jukebox

connects directly to the network with software that supports access via both TCP/IP and

IPX/SPX. Each platter side appears as one volume to Netware clients and as one

filesystem to UNIX clients. All modules of the document delivery system that access the

image database would be rewritten to reflect the new organization and location of the

image archive. The result would permit easy access to the database by both Netware and

UNIX applications. However, the high cost of the new, sophisticated image store and the

many person-months of programming effort may need to be justified on programmatic

grounds.

..1

( OUTPUT

Netware SDK

Various Databases

Figure 3. Proposed modules for maximum flexibility solution.

Figure 3 illustrates one concept of how modules of the document delivery system that

access the image store would be organized in a system designed to maximize flexibility

and access. All modules are rewritten to reflect the new system and file organization. They

are no longer individually responsible for understanding image database organization or

file location, but invoke a new module for all image file access. The new file I/O "agent" is
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responsiblefor specifyingor discoveringthe location of any file and mediating all reads

and writes to the image store. It creates and uses database information to determine the

path to a given file and employs the functions in the Netware SDK to obtain information

about the volumes containing the files. Should the image database be relocated or

distributed among several sites, only the databases used by the file I/O agent would be

changed.

Conclusions

Most hardware and software requirements for a new image store are satisfied by the

division's HP 100 optical disk jukebox connected to a Sun UNIX platform and accessible

from PC Netware clients via the Netware NFS Gateway. Moving the image database to a

UNIX platform also immediately increases its exposure to a new set of clients and

potential applications. But moving the image database to any new location demands

changes in the software of the application for which it was originally created. The

difficulty in determining the design of the new image store lies with the conflicting goals of

minimizing cost and maximizing flexibility and access. The final decision on the design

approach will depend upon the importance to the organization of being able to use the

image database in the future.
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Abstract

Current operational capabilities of tape recording for Very Long Baseline Interferometry (VLBI) at
the Haystack Observatory allow 0.7 terabytes (12 hours at 128 Mb/s) of data to be stored in a

128 in 3 volume. On-going efforts are aimed at full time 1 Gb/s operation with two 36-channel
headstacks. Applications for linear digital tape recording, with suitable development of thin-film

head arrays, suggest a volume density exceeding 1 TB/in 3 to be achievable in the future.

I. Introduction

The sensitivity of Very Long Baseline Interferometry [VLBI] observations is proportional to only
the square root of the number of bits recorded and processed. This fact, and the lack of affordable
alternate means of sustained high-rate data transmission, continues to spur development of ever

higher rate and density tape recording systems for VLBI.

The VLBI recorders developed at Haystack for VLBI operation employ the linear [longitudinal]
Metrum, formerly Honeywell, Model 96 instrumentation drive, which was selected in 1975 for its
excellent tracking repeatability. These drives reliably handle 14" reels of inch-wide tape, now at
speeds up to 10 m/s [420 ips], as well as with tape tension as low as 5/8 and as high as 5 N.

VLBl-qualified tapes (3M5345 and SonyD1K) can be shuttled for thousands of passes under these
conditions without any noticeable edge-damage [as evidenced by the formation of a bumpy pack].
An understanding of the damage mechanisms and tape-path modifications were developed to make
the drive safe for thin tape at high speed. The 15.2 mm thin, 5500 m long, SVHS-similar Co-
Fe203, PET-based tapes, which we have qualified for recent VLBI systems, each store 0.7

terabytes [12 hours at 128 Mb/s] in a 128 in3 volume.

A total of 576 [38 mm wide] tracks, for example 16 passes with 36 channels at a time, are written

at a linear density of 2.25 transitions/mm [2 bits/ram with an 8/9 channel code]. A new version of
the recorder (MklV) operating at 8 m/s is capable of 1 Gb/s operation with two 36-channel
headstacks and 2 Gb/s with four headstacks. The growth of the data rate and volume density in

VLBI recording is illustrated in Figure 1.

Haystack's narrow-track ferrite read-or-write headstack design, illustrated in Figure 2, has been
used since its introduction in 1985. It has been a 'product' manufactured by Metrum since 1989,
unfortunately only in the small volumes required by its single VLBI application, which makes it

increasingly less affordable. More recent recorder applications all use the same sub-mm resolution
positioner [piezoelectric Inchworm actuator and LVDT sensor], one for each headstack. This
positioner was developed to support narrow-track serpentine recording. It will need no significant
improvement to support much narrower, even sub-mm, trackwidths since actuator resolution is
about 4 nm.
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lI. Goals for Future Developments

The more recent version of our VLBI tape recorder developed for the NRAO VLBA system is
designed to operate full-time at 128 Mb/s at 2 m/s. With a 10-station array, the VLBA collects
14 TB/day and could process 56 TB/day with its 20-station 4 m/s correlator. A new correlator
(MklV) under development at Haystack will be configurable to keep up with 4 Gb/s per station;
another iteration could easily raise that to 4 GB/s. Processing hardware will therefore soon cease
to be the chief limit on VLBI bandwidth, hence sensitivity.

Thus there is a need to provide affordable full-time VLBI recording soon at Gb/s, and not much
later at GB/s, rates. The first goal, achieving Gb/s rates, requires only new thin-film head-arrays.
The second goal, achieving GB/s rates, requires new tape as well. Both these goals are discussed
below.

The highly repeatable tracking of the Model 96 drive has been modeled and is now well
understood. It is good enough to permit trackwidth reduction from 38 to 7-10 mm without, and
probably less than 2 mm with, possibly only minor modifications. Short-term nonrepeatability is
about 1 mm p/p and is due to wobble of the capstan, which is in close proximity to the head. The
'perfect' edge-guide [beating point] in the slanted-wall vacuum pocket is much further away. The
desired modifications under development should have the effect of bringing head and edge-guide
very much closer together. They must also increase the along-tape distance from head to capstan,
and/or isolate it with another sliding edge-guide between head and capstan.

The principle of tilted-wall vacuum-pocket edge-guiding can be applied to vacuum-less guides
such as tilted posts or flexible conical-foil air-bearings. Long-term nonrepeatability and sensitivity
to pack imperfections which produce a reel once-around 'bump' signature is also eliminated by
bringing head and edge guide together. Much more robust, pack-imperfection-tolerant passive
tracking should result.

a. Thin-Film Head-Arrays

Haystack is seeking support to collaborate with Seagate Tape Technology Inc. to further develop
thin-film head-arrays for linear multichannel drives. Thin-film head-arrays, with inductive write
(IW) and magnetoresistive (MR) read elements, are key to achieving both high data rate and
density at the lowest cost. Sensitive MR heads will allow a 4-fold increase in track density with
the present tapes. A read-width of 9 mm and write width of 11 mm can therefore now be
targeted. More conservative specifications for VLBI thin-film head-arrays proposed in 1993 (not
funded) are given in Table 1.

Current processes for thin-film IW-MR disk heads allow increasing channel density from 36 to at
least 144 per inch. Channel densities of 1000 per inch or so are not far off for MR and 1-2 turn

IW heads. With a mature high-yield process, if chips are of comparable size, the cost of a dense
head-array should eventually become comparable to that of a single-channel disk slider. This will
happen only when and if a comparably large linear tape head market develops. Commonality at the
wafer level with a high volume PC/consumer product is therefore highly desirable. The
manufacturability of dense arrays is the central issue for this kind of product.

b. The Promise of Advanced Tapes

Advanced high-SNR, high-resolution, super-smooth, ultrathin (3-7 mm) metal-evaporated, metal-
particle, and barium ferrite tapes promise further 4-fold density increases in each dimension and

3
continue to be evaluated. TB/in volume density is technically within reach with products like
WVHS and Hi8Master tape.

Efforts to guarantee more nearly ideally robust edges for ultrathin tape must be pursued with the
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Specifications for VLBI Head Array Prototypes

Read-Only Array

Technology Thin Film

Track Width

Head Pitch

Number of Heads in Array

Equivalent Spacing

MR

19 Microns

349.25 microns

72

< 0.05 microns

Write/Read-Verify Array

Technology Thin Film

Track Width

Head Pitch

Number of Heads in Array

Equivalent Spacing

Inductive

22 microns

349.25 microns

72

< 0.1 microns

For Both Arrays

Minimum Record Density

Tape Speeds Up To

Media

56,000 kfci

8 m/s (32O IPS)

3M 5345 (16-micron thick)

Similar to S-VHS)

Table 1

119



collaborationof manufacturers.A degree of rounding of the corners of order 10% of thickness
and comparably small edge asperities are needed to guarantee that plastic deformation of these
asperities does not lead to edge-thickening which results in a bumpy pack.

Since the stiffness of tape goes as thickness cubed there may be a more fundamental problem with
winding much thinner than 15 mm tapes on large self-packing reels. These were invented for
VLBI in 1978 and the design was improved in 1994 explicitly to suppress scatter-wind so as to
make the tape directly shippable. Self-packing reels intentionally use close spacing and curvature
of the flanges to guide the tape into a smooth-faced pack. This does not damage the edge even
under extreme high-speed [8 m/s], high-tension [4.4 N], long-term [1000 pass] running
conditions. Both 3M5345 and SonyD1K typically pass such 'torture' tests with no evidence of
damage [a bumpy pack when wound at 2 m/s]. With 9-mm tape samples similar to 3M5354 the
tape edge tends occasionally to hang up slightly on the flange and voids are formed because
subsequent turns yield too easily. Even without this problem, unreasonable thickness uniformity
requirements may be placed on ultrathin tape wound into a 14" diameter pack. Ultrathin tapes are
likely to be much better suited for formats where the pack diameter is kept under about 3" [VHS,
3480, DLT, QIC, etc.].

III. Longer Term Potential of Tape Recording Applications

Tape recording is and for the foreseeable future will remain by far the densest and most economical
form of data storage. Applications that must sustain high data rates in the 0.1 to 10 Gb/s
neighborhood or that require convenient access to enormous [of order 10"* 15 bytes (petabyte)]
data libraries will continue to rely on tape.

The overwhelming volume density and capacity advantage of tape is due entirely to its high
relative thickness-density. The areal density of tape recording can keep up with the advances in
disk recording. Though track densities on tape [especially in linear systems] have traditionally
been lower than on disk, simple passive edge-guides can provide essentially perfectly repeatable

tracking; active track-following should not be needed to at least 10,000 tpi.

The two fundamental advantages of linear [compared to helical-scan] tape drives are: (1) its
mechanical simplicity, and (2) its ability to support many parallel channels, hence very high
aggregate data rates, without added complexity.

A low-cost high-rate linear digital VCR is possible in the future. Given the 4 in 3 capacity of a

VHS cassette or 3480 cartridge for example, a 250 Mb/s machine could operate for two hours at a

volume density of only 1116 terabyte/in 3, a density that can be achieved with some of today's tape

and head components. The 'effective density' of the Hi8 analog consumer video tape recording

format in long play mode is about 1/20 TB/in 3 for example. This density is already so high that

the use of so-called data-compression [redundancy reduction, especially the lossy varieties used

for video] for tape-storage seems counter-productive, an unnecessar_ added special-purpose
complexity. Rather, with more than an order of magnitude higher TB/in density on the horizon,

the highest-volume market for such high capacity storage should be cultivated. There should be no
doubt that the all-purpose high-rate capability of the linear recorder can be made attractive to the
consumer/PCuser.

The key prerequisite for this development is the availability of mass-production processes for (1)
dense thin-film narrow-track head-arrays as discussed above, and (2) simple, low-power, multi-
channel ICs.

The thin-film head and integrated channel technologies are ones in which the U.S. maintains a
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strongleadership.Theseprovide a majoropportunityfor theU.S. storageindustry to take the
initiative to reenter the consumer market with native drive, head, channel, and tape component

technologies, each of which has substantial technical and/or manufacturability advantages.

Author's VLBI-Related Work Background

Hans F. Hinteregger received B.A. and Ph.D. degrees in physics from MIT in 1964 and 1972
respectively and has been at Haystack Observatory since 1967 at the time of the first very long
baseline interferometry (VLBI) experiments. He pioneered the geodeticJastrometric applications of
VLBI by introducing means to accurately measure group delay (by coherently sampling a wide
spanned bandwidth). Since 1975 his work within the Haystack VLBI Group has focused on the
development of the extreme wideband digital tape systems required by VLBI. The latest version of
this system (Mark IV) has demonstrated 1 Gb/s operation with sixty-four 16 Mb/s channels [using
two headstacks of the author's 1985 design].
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Abstract

A random access system is proposed for digital storage and retrieval of up to a Petabyte

of user data. The system is comprised of stacked memory modules using laser heads

writing to an optical medium, in a new shirt-pocket-sized optical storage device called the

Opticel °. The Opticel described is a completely sealed "black box" in which an optical

medium is accelerated and driven at very high rates to accommodate the desired transfer

rates, yet in such a manner that wear is virtually eliminated. It essentially emulates a

disk, but with storage area up to several orders of magnitude higher.

Access time to the first bit can range from a few milliseconds to a fraction of a second,
with time to the last bit within a fraction of a second to a few seconds. The actual times

are dependent on the capacity of each Opticel, which ranges from 72 Gigabytes to 1.35

Terabytes. Data transfer rate is limited strictly by the head and electronics, and is 15

Megabits per second in the first version.

Independent parallel write/read access to each Opticel is provided using dedicated drives

and heads. A Petabyte based on the present Opticel and drive design would occupy 120

cubic feet on a footprint of 45 square feet; with further development, it could occupy as

little as 9 cubic feet.

Introduction

The Compact Disc digital audio player dramatically illustrated the classic criteria for a

successful new market entry: it produced a significantly higher-quality product in a

smaller size, with important new features yet at a competitive price, in a marketplace

which had stagnated.

The Newell Opticel promises the equivalent for video bandwidths: a digital recorder-

player module which, by meeting the same criteria, would bring about an even more far-

reaching revolution in the computer and home-entertainment markets.

"Trademark
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The Opticel drive combines novel cartridge concepts with three other discrete

components: optical heads, optical media, and signal and control electronics. It is

packaged in a standard 3-1/2-inch form factor, one-half the volume of the highest density

5-1/4-inch CD ROM drive, with over ten times its capacity, yet with access times

comparable to single-disk systems, and transfer rates limited only by the digital
electronics.

There are many development efforts under way seeking such an objective. Those known

all suffer critical shortcomings: disk-based systems are bulky and have limited transfer

rates; tape-based systems have poor access times. The Opticel retains the advantages of

both with none of the fundamental disadvantages.

The Optical Head

Primelink is developing two heads:

(a) An IR-laser head, on a conventional 2-axis fine actuator movement (tracking and

focus) and a stepper-motor/ball-screw carriage assembly for coarse tracking, is

being designed.

(b) A red-laser-based, integrated, solid-state, multi-channel head system is being

researched, with no tracking movements (i.e. no moving parts).

The first head will go to production in mid-1995; the second is scheduled for release in a

second-generation product (probably around the year 2000).

The Optical Recording Media

Primelink has working agreements with two U.S. companies for archival or WORM

optical tape, and for non-archival, erasable tape. Both are compatible with the optical
head lasers.

The Data Encoding/Decoding Method

Background - The encode/decode technique normally used in today's WORM disks is to

ablate a pit using an IR laser. The data are encoded by phase-modulating the position of

the pit-edge along the track.

If the wavelength of the laser is _,, the numerical aperture of the lens N, and ablation is set

to occur at the 50% level on the Gaussian energy curve, then the pit diameter becomes

dpit = 2N (1)

9412-16 124



A commerciallyavailablehead_ employs,for example,_, = 785 nm, NA = .53. This
gives a spot sizeof 0.74 micron. To allow for inter-trackgroovesand tracking servo
error,a trackpitch of 1.6micronisemployed.Thisyieldsa rawarealdensityof

10 6
Draw -"

0.74 x 1.6

= 0.84 x 10 6 cells/mm 2 (2)

A 5-ll4-inch CD-ROM provides 8 x 103 square millimeters of usable recording area. The

capacity of the ROM is thus

Craw = 0.84 x 8 x l09

= 6.72 x 10 9 cells (3)

For digital data, run-length-limited (RLL) encoding can be used, giving 1.5 bits/cell.

Formatting and error correction to a bit-error rate (BER) of a 1 x 10 15 requires an

overhead of about 50%. The number of bits/cell is thus

N =1.5x0.5

= 0.75 bits/cell (4)

The net user capacity is thus

6.72x109 x0.75

Cuser = 8 x 106

= 630 MB (5)

High Density Encoding

Two state-of-the-art techniques have been evaluated for the encoding/decoding circuitry:

(a) Light Intensity Modulation (LIM) - Asahi 2 has demonstrated that it is feasible to

reduce the spot diameter by as much as one-sixth that previously realizable for an

IR laser, and the track pitch to 0.87 micron, thus theoretically increasing the raw

storage capacity of a 5-1/4-inch CD-ROM to as much as 10 Gigabytes. This was

accomplished by modulating the light intensity of the laser, using feedback to

allow operation higher up on the Gaussian curve. To achieve this density in
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practice, however, would require a shorter-wavelength reading laser and

extremely high mechanical tolerances.

Solid-state blue lasers are under development by several companies; 3 however,

they are not expected to be commercially available for several years. However,

green lasers are becoming available and should be able to resolve cell lengths in

the order of 0.47 micron. This is also more practical mechanically.

Assuming a green laser, and assuming the bits/cell of equation (4), the user bit

length using LIM would be:

0.47
d LIM --

0.75

= 0.63 I-t (6)

Using Asahi's track spacing of 0.87 microns, this would give an areal density of

1
D=

.63 x 0.87

= 1.8 Mb/mm 2 (7)

(b) Mark Edge Recording - SOCS Research 4, Los Gatos, California, and Sony 5 have

demonstrated the ability to write three bits on both the leading and trailing edges

of the cell (see Fig. 1). Primelink has taken a license under this patent. Using an

IR laser, Primelink has demonstrated:

• a track width of 0.87 microns

• a cell with 6 bits on 1.67-micron centers gives an average bit length of

1.67
D rain

6

= 0.281.t (8)

Using the Sample Servo method for tracking in place of grooves, a track pitch of

1.2 microns was achieved. This gives a raw areal density of

10 6

Draw

0.28 x 1.2

= 3.0 Mb/mm 2 (9)
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The Cartridge/Drive System

As described above, the raw areal densities achievable using production heads and state-

of-the-art encoding techniques on 5-1/4-inch disks, have been demonstrated to be

between 1.5 to 3.0 Megabits per square millimeter.

Primelink has developed a digital video optical recorder using the Mark Edge Encoding

method on phase change (reversible) and ablative (archival) media. To provide "high

fidelity" video graphics to the PC market, it was assumed that at least VGA resolutions of

640 x 512 pixels/frame are needed. To upgrade NTSC and VGA to SVGA resolution and

provide for HDTV quality for ultimate home entertainment systems, two proprietary

DSP algorithms were used to quadruple the pixels to 1280 x 1024. 8 bits/pel were used

for luminance, 4 bits/pel for each of the chrominance pixels. From subjective tests using

a simple, proprietary, lossy compression algorithm, it was determined that compression

ratios of 10:1 would yield decompressed images subjectively virtually indistinguishable

from the original.

Using the above parameters, the required user capacity/frame during transmission and

storage is

C_ / frame =
640x512(8 + 4 + 4)

10

= 0.52 Mb/frame (10)

For full motion, 30 frames/sec, are required. The average bit transfer rate is thus:

BTR = 0.52 x 106 X 30

= 15.7 Mb/s (11)

C ll/_e[/hr. --

15.7 x 106 X 3600

8 X 10 9

= 7.1 GB/hr. (12)

Combining equations (7), (8), and (12), and allowing 50% overhead for error correction

and formatting, the recording surface area required, depending on the laser/media

required, is:

A/hr. --

7.1 x 109 x 8

(3.0 to 1.8) x 106 X 0,5

= (3.8 to 6.3) x 104 mm 2/hr. (13)
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Background

Using 5-1/4-inch CD-ROM disks with a useful area of 1 x 10 4 square millimeters, from

equation (13), the number of disks required would be:

N = 3.8 to 6.3 disks/hr. (14)

This is not an attractive solution for digital video, for the following reasons:

. To be a next-generation (full bandwidth digital) version of SVHS (analog)

recorders, the capacity should provide for at least 5 hours. 20 and 40 CD-ROM

disks or two disks, requiting a stackloader, 15 to 20 inches in diameter would be

needed.

, Even the 5-l/4-inch drive form factor is too large for lap-top computers and hand-

held camcorders. A single standard for universal application would not be

possible. This is a requirement for the Primelink system.

For 15.7 megabits per second transfer rate, 50% overhead, from equations (6) and (8), the

required beam writing velocity is:

V = 15.7 (0.28 to 0.63) x 2

= 10 to 20 m/s (15)

and the total capacity required is:

C r_. = 7.1 X 5 = 35.5 GB (use 36 GB) (16)

While this writing velocity is not difficult to achieve with rotating disks and stepped

laser-optical heads, disks have been shown above to be impractical for our purposes

because of their limited capacity. To achieve the required storage area, especially in a 3-

l/2-inch form factor, a tape system became mandatory.

Known attempts to achieve such optical beam writing velocities using conventional tape

drives have all employed scanning devices of one type or another:

(1) Rotating scanners:

Many historical attempts have been made using rotating prisms, lasers on head-

wheels, etc. They have invariably failed to reach the market in small, modest-cost

systems because of the problem of tracking to the tolerances of laser writing.
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(2) Solid-statescanners

LaserTape and others have attempted use of solid-state scannerswithout
commercialsuccess,becauseof difficulty in achievingtherequiredscananglein
compact-geometrysystems,aswell asin trackinglateraltapeskew.

(3) Linear-motorscanners

CREO is the only companywhich hasachievedsubstantialsaleswith an optical
taperecorder. Usinga linearmotor-drivenplatformon which 16 writing and 32
reading lasersare arrayed,a stationaryfield of 35-mm. tape is scanned,after
which the tape is incrementedto the next field. The systemis mechanically
massive,andsells for about$250,000CDN. This approachofferedno solution
for thePrimelinkproject.

The Newell II (NII*) Tape Cartridge 6 can easily achieve the required writing velocities

without use of an intermediate scanner, and could have been used for this application.

The author demonstrated such a cartridge at Newell Research Corp., using 100 meters of

8-millimeter ICI optical tape on 25-micron basefilm, thus providing 8 x l0 s square

millimeters of surface area at tape speeds to 1000 inches per second. This would

potentially provide raw capacities of

CNII

(1.8 to 3) x 106 X 8 X 10 s

= 180 to 300 GB (17)

for video recording times of

180 to 300
T =

7.1

= 25 to 42 hours (18)

Such a system was an "overkill" for the proposed Primelink project, however, and would

be more expensive than desired because the cartridge must be reversed at beginning and

end of tape. The pulse-power of the motor-drive system required to reverse the system

within a time interval that could be economically buffered for continuous video, would be

high.

"Trademark
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The Newell Opticel 7

The low tape consumption required for the Primelink project suggested the use of an

endless tape loop in a "scramble bin." Such a loop in concept is much simpler than the

Nil cartridge, in that no tape drive belts or tape reels are required within the cartridge (see
Figs. 2,3).

While endless loop systems are well known in magnetic tape systems, the unique

problems of an optical tape system using a loop were not trivial, due to the following
factors:

The loop must revolve at high speeds, thousands of times during each record/play
cycle.

The optical recording surface must not be fogged during the life of the cartridge

(hundreds of thousands of passes).

Due to the sub-micron dimensions of the bit cell, debris must not be allowed to

accumulate on recorded surfaces from wear or environmental contamination.

The film must be coupled to the drive and tensioned precisely in the longitudinal

direction (X-axis control).

The film must be edge-guided with very low edge pressure to avoid edge fatigue (Y-
axis control).

• The film must be stable in the axis of the laser optics due to very shallow focal depth

of the optics (Z-axis control).

Each of these problems, and the method for dealing with it, is disclosed in several patents

pending, available on request under a suitable Confidential Disclosure Agreement.

To achieve five hours of high-definition digital video, 16-millimeter tape was used, and

two loop lengths were provided for the two encoding methods:

L = 5(3.8 to 6.3) x 10 .2
16 x 10 .3

= 12 to 20 m (19)

To achieve long life, bending stresses in the tape were kept within 35% of elastic limits,

and no optical surfaces or tape edges touched any other surface. The Opticel case was

hermetically sealed and back-filled with one atmosphere of a suitable dry gas. 12.5-
micron tape was used.
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TheaboveparametersrequiredOpticelcasesizesof:

Height: 18.5mm
Width: 90mm
Length: 95mm and140mm

ThestandardOpticel is on thefootprint of a3-1/3-inchfloppy disk.

Thedrive usedexactlythesameelementsasaWORM diskdrive:

• Laserhead(with Y-Z axiscontrol)

• Drive motor(brushless)

• ControlandDSPelectronics(ASICs)

3-1/2-inchstandarddrive dimensionswereemployed:

Height: 41.3mm
Width: 101.6mm
Length: 152.4mm

An Interchangeable Opticel Using the NII Principle

To achieve much higher capacities, the same cartridge/drive interface geometry of the

Opticel scramble-bin cartridge can be employed in an NII-type cartridge (see Fig. 3).

This allows a high-performance drive system to be developed that would be downward

compatible in writing and reading the Opticel.

The NII development is not within the scope of the present Primelink project.

this development would be a logical follow-on to the Newell Opticel.

Summary

However,

The Opticel drive uses the 3-1/2-inch standard form factor for both standard and

"stretch Opticels.

The time to the first bit is less than 5 milliseconds; to the last bit is 1 second for the

standard Opticel, 2 seconds for the "stretch" Opticel

The parts count in the drive is lower than that in a typical 5-1/4-inch WORM optical
disk drive.

Capacity of each Opticel (formatted data with BER of 1 x 1015) is 36 Gigabytes for

the standard Opticel, and 72 Gigabytes for the "stretch" Opticel.
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Two Proposed Petabyte Systems

Based .on the loop Opticel

A "stretch" Opticel with MER encoding using 24 meters of tape gives 72 Gigabytes per

Opticel. This will fit in a 6-inch drive, with 1-1/2-inch overhang.

For a Petabyte, number of drive modules needed is:

1015
= 13,889

72 x 10 9

In a stack loader (see Fig. 4) use:

64 modules/column

8 columns/drawer

3 drawers/cabinet

9 cabinets

This would give dimensions of:

Height: 2.75 m

Depth: 0.813 m
Width: 0.572 m x 9 = 5.15 m

With additional R & D the size and access time can be reduced by using:

• Smaller cells:

Light intensity modulation, MER encoding

Short wavelength laser (green or blue)

Tighter track servoing

From Asahi oredictions:

Minimum cell size: 0.2 I-t

Cell spacing: 1.67 x

Track pitch: 0.871.t

0.20
- 0.4511

0.74
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Equation(9)becomes:

Draw •

6 x 106

0.45 x 0.87

= 15 Mb/mm 2 (9')

Thinner tape:

The limiting factor is the shear strength between coating and basefilm; ie., the

capacity is inversely proportional to the basefilm thickness. By using 4-

micron basefilm, maximum length in the "stretch" version can be increased,

and equation (19) becomes

12.5
L = 24x--

4

= 75 m. (19")

• Higher tape velocity:

Primelink has attained tape velocities of 25 meters per second with no

difficulty, giving an access time of 3 seconds to 75 meters.

User capacity/Opticel with loop would thus increase to:

Easel

0.5 x 75 x 15x 16x 10 9

8

= 1.125 TB (20)

For the Petabyte, number of drive modules would be:

103
- 889

1.25

The stack loader would require only two drawers in one cabinet.

Based on the NII Opticel

The NII cartridge with 4 micron tape can store 450 meters of 16-millimeter tape in the

standard Opticel case size.

• Again, using proven MER encoding with IR lasers, the user capacity becomes
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0.5 x450 x 3 x 16 x 109
C

user

= 1.35 TB (21)

Maximum access time would be 18 seconds. Number of drive modules for a Petabyte
would be

103
= 741

1.35

Again, two drawers in one cabinet would be required.

Using LIM encoding with green lasers, the user capacity could be theoretically

increased fivefold to 6.75 Terabytes, reducing the number of modules to 148, thus

reducing cabinet dimensions to, say

Height: 1.60 m

Depth: 0.813 m
Width: 0.470 m

Its volume would thus be 9 cubic feet.

.

2.

,

o

o

,
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FIG. 4: PETABYTE MASS MEMORY SYSTEM

Proposed by Primelink Technologies Inc.
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1.0 Abstract

The Data Migration Application Programming Interface (DMAPI) has the potential to allow
developers of open systems Hierarchical Storage Management (HSM) products to
virtualize native file systems without the requirement to make changes to the underlying
operating system. This paper describes advantages of virtualizing native file systems in
heirarchical storage management systems, the DMAPI at a high level, what the goals are
for the interface, and the integration of the Convex UniTree+ HSM with the DMAPI along
with some of the benefits derived in the resulting product.

2.0 Introduction

For years developers of Hierarchical Storage Management (HSM) systems have had to
choose between integrating their system with the underlying Operating System (OS), or
take the more "open systems" route of not requiring any changes to the OS. Integration
with the OS allows an HSM to virtualize the native file system. The open systems approach
allows easier porting from platform to platform.

The advantage to virtualizing the native file system is that most all applications that reside
on top of the file system will continue to operate without requiring changes. Even low level

functions like the NFS _ network protocols continue to function on HSM controlled file

systems. In addition, applications that access data in these file systems can expect
performance equivalent to file systems not controlled by an HSM for resident files.
Examples of products in the market place today that require changes to the OS include the

NFS is a registered trademark of Sun Microsystems, Inc.
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EpochServ2productfrom Epoch3SystemsInc.,andtheAMASS4productfrom Advanced
ArchivalProductsInc.

TheEpochServeproductuses"hooks" in theOSviaaspecialdevicedriverandchangesto
thenativefile systemto gainaccessto eventslike file creates,removes,accesses,etc.
AlthoughtheOSchangeshavebeenminimized,subtlechangesin theoperatingsystem
from releaseto releasecanintroduceproblemsin theHSMsupportfunctions.Forexample,
supposetheOSvendorchangestheinterfaceto thekernelmemory'allocator that the HSM
hooks use. Now the HSM must be modified to work with the new allocator, qualified, and
released with all of the costs associated with that process.

The AMASS product installs a new file system into the host operating system at the Virtual

File System (VFS) layer. Although the VFS interface is fairly well defined industry wide,
subtle changes from release to release can cause problems interfacing with the kernel
support functions not as well defined. Although changes to the OS can be minimized,
kernel integration makes porting of the products more difficult.

UniTree 5 is an example of a product that requires no operating system changes. It sits
above the OS and accesses the required OS functions via the POSIX p1003. ! interfaces. It

provides access to the data in the archive via the FTP, RCP, and NFS protocols. It does
not use native file systems or utilities, but instead provides separate implementations of
each. As a result, the product is more easily ported from platform to platform and usually
does not require changes as a result of a new OS release. This portability comes at a cost
however. UniTree products do not benefit from enhancements provide by the base

operating system. New operating system releases tend to have both functionality and
stability enhancements included. Because UniTree implements its own file system, the new
functionality may not be available. Applications that access a file system by read and write
system calls cannot access data stored in the UniTree file system without going through the
NFS protocol suck. The access methods provided by UniTree tend to be slower than the
same services provided by the underlying operating system. To quantify the performance
penalty for this, a single stream access to the local file system in the ConvexOS can reach
rates above 45MB/s. UniTree file system access through local host NFS protocols are
under IMB/s.

An alternate approach to the two type of HSM's described above is one that requires no

operating system changes yet has access to the native file systems through a set of kernel

2 EpochServ is a registered trademark of Epoch Systems Inc.

3Epoch is a registered trademark of Epocl_ Systems Inc.

4 AMASS is a trademark of Advanced Archival Products Inc.

5 UniTree is a trademark of UniTree Software Inc.
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supplied"file systemhooks". Three examples of HSM's with this attribute is the FileServ

Software 6 product from EMASS 7 , the Convex Storage Manager (CSM) product from

Convex Computer Corp., and NAStore developed by NASA Ames Research Center. All
of these products sit on top of the ConvexOS operating system which runs on the C-Series
architecture's. ConvexOS exports a set of interfaces that provides functionality similar to
what the kernel intrusive HSM's described above export to their user level applications. An
application can receive events like read(), write(), trunc0, create(), etc. as well as suspend
access to data in a file for non HSM applications. The HSM applications can read data from
a file without updating time stamps, punch holes (i.e. free space in a file without changing
the apparent size of the file), fill files with data previously migrated out, and re-enable
access to the file for non HSM applications. All of these operations can be accomplished
completely transparent to normal applications. This allows development of HSM
applications like the kernel intrusive ones described above without the drawbacks of having
to integrate changes into the base operating system.

The major drawback to the ConvexOS file system hooks are that they are not available on
any platform besides the C-Series line of products. What HSM vendors require is access to
a standard set of file system hooks across a diverse set of operating systems and platforms.
Without this, an HSM vendor can only make a business case to support platforms where
they can deliver sufficient volume of product to offset the inherent cost of supporting
kernel modifications. This realization was what prompted a set of competing vendors of
computer platforms and HSM products, to form an industry consortium known as the Data
Migration Interface Group (DMIG).

3.0 DMIG

The DMIG consists of a large group of vendors and a smaller group of active participants
in the specification process including: 3M, ACSC, Amdahl, Auspex, Avail Systems, Bull,
Convex, E-Mass, Epoch, Hitachi Computer, HP, IBM, Lachman / Legent, Legato,

NASA / Ames, Netsor, Novell / USL, OpenVision, SCO, SGI, Sunsoft, and Veritas s .

This group got together through the 1993 - 1994 time period to produce a specification for
a file system interfaces that all parties could agree to support (if not in a product, at least in
spirit). The goal of the interface is to enable development of HSM and backup products on
computer systems that virtulize the native filesystem without requiring OS modifications.
Needless to say, there were many heated debates during the course of the meetings and on
the DMIG reflector, but the group did finally agree on a set of interfaces known as the
DMAPI.

6 FileServ Software is a registered trademark of E-Systems.

7 EMASS is a registered trademark of E-Systems.

8The companies listed are those that attended at least one meeting in the 1994 time frame and if I missed
someone, I apologize in advance.
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4.0 DMAPI [I]

The DMAPI is a set of interfaces to be provided by the base operating system that enables
HSM and backup applications to gain access to native file system data and metadata
transparent to normal applications. It includes the following basic concepts:

1: Events- Data Management (DM) applications can request to be informed of specific
events like read(), write(), etc. The event notification is via messages which DM
applications gain access to via the dm..geLevents0 call. There are two distinct
message types; synchronous, and asynchronous. Synchronous messages have
tokens associated with them. Asynchronous do not have tokens associated with
them.

2: Tokens- a token is a reference to the state associated with a synchronous event
message. The contents of a token are opaque to the DM application. DM
applications can modify the contents of a token only through the
dm_request_right0 and dm_release_right0 call. Rights can be granted to a DM
application including DM_RIGHT_EXCL, DM_RIGHT_SHARED, and
DM_RIGHT_NULL. DM_RIGHT_EXCL prohibits any access to a file except
through DMAPI calls that accept tokens, and only then if the token with the
DM_RIGHT_EXCL right is passed to the interface. DM_RIGHT_SHARED
protects against any modification of the data or metadata associated with a file, by
normal or DM applications, but will allow multiple accesses to the data or metadata.
DM_RIGHT_NULL grants no rights.

3; ManagedRegions - A managed region designates the portions of a file that the DM
application is managing. There are 3 possible events that may be enabled on a
managed region; DM_REGION_READ, DM_REGION_WRITE, and
DM_REGION_TRUNCATE. If the corresponding action, read, write, or truncate,
is attempted by a non DM application to the associated region, an event will be
generated for the DM application that has expressed interest in the corresponding
portions of the file. The number of managed regions supported by the DMAPI is
im plementation deft ned.

4: Handles - Pathname independent references to file system objects. A file handle
uniquely identifies a file system object. Handles exist for file systems, directories,
files, symlinks, and one special global handle that does not refer to any object but
allows a DM applications to register for mount events.

5: Sessions - The interface between the DM application and the DMAPI is session
based. The session is the identifier used to determine who receives events for a

particular file system object. Sessions can be thought of as two things; a queue that
event messages are queued ut to, and an identifier for use in tracking, auditing, and
controlling access to the DMAPI facilities.
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6_ Data Management Attributes - Space for a DM application to store pertinent
information about a file. The data in the attribute space is opaque to the DMAPI
implementation. Examples of information that might be stored include the location
of data from the file in the archive for migrated files. DM attributes are an optional
portion of the DMAPI.

7_ Ho/es - Holes can be created two ways. First is via the lseek0 function. If an
application seeks past the existing end of a file, and writes some data,
implementation may create virtual space in a file without any corresponding storage
allocated. The second way is via the DMAPI call dm_punch_hole0. This call frees
the storage associated with the portion of the file where the hole is punched (i.e.
frees file system space once a file is migrated to tertiary storage).

In general DM applications create a session, register for mount events, catch mount events
and establishs interest in files by registering for events within a file system. They then
catch events for the files of interest, and perform actions to migrate files in or out as
needed.

DM applications are viewed as a part of the file system implementation and as such have no
security restrictions placed on them. All calls to the DMAPI are expected to be run as
superuser or some other file system permission that would give an application un-restricted
access to the data and metadata in a file system. There is no association of DMAPI objects
to any one process. Any application, running at the appropriate security level, with the
correct session identifier and token identifier, can take actions on file system objects. The
rational for this is to allow a DM application to use as many processes as required to deliver
acceptable performance. There is also an underling assumption in the specification that only
one DM application will attempt to control a file system. There is nothing to prevent
multiple DM applications from controlling a file system, but coordination of the DM
applications is outside the scope of the DMAPI. An example of a case where multiple DM

applications may run on a single file system is where an HSM application and a Backup
application cooperate to backup the HSM controlled file system. The reason for this is, for
more than one application to control objects in a file system would require considerable
machinery in the DMAPI. One of the primary goals of the DMIG group was to produce a

specification that could be implemented in a six man month development project. To
produce the machinery required would extend the level of effort far beyond the six man
month goal.

The following are examples of DM applications pulled from the DMAPI specification.
These are included to give a better idea of how the interfaces are intended to be used. [1]

4.1 $tageout

This example will stage out a 512 megabyte file names/test/£oo. The first 64K will
remain as a fence post. The remainder of the file will be staged out in 32 megabyte clusters.

The following concepts are illustrated:

• Use of the file change indicator
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• Invisible read

• Setting managed region

• Punching holes

char
void

size_t
size_t
size_t
int

off_t
dm_token_t
dm_staU

dm_region_t
dm_size_t
dm offt

dm_sessid_t

*buf;

*hanp;

off;

Men;

retrgns;
nchunks;

change_end, change_start,

fiietoken;
statbuf;

rgnbuf[2];
roff;

den;
sid;

if (dm_init_service 0 = - 1) {
err_msg("Can't initialize DMItri");
return(0);

}

dm_create_session(DM_NO_SESSION, &sid, "generic_app');
dm_path_to_handle("/test/foo", &hanp, &hlen);

]*

* In order to slat the file, we need a shared lock.
*/

dm_create._userevent(sid, 0, (void *)0, &filetoken);

dm_reques t_righ t(si dJump .Illengiletoken,DM_WAIT,DM_SHARED);

]*

* While writing the file out to tertiary storage, we drop locks. We first
* get the file change indicator, and query it after we're done.
* If it changed, then we give up
*/

dm_get_fileattr(sid, hanp, Men, filetoken, DM_AT_CFLAG, statbuf);

change_start = statbuf.dt_change;

/*

* We don't bother with any DM attributes,just the data.
* We write the file out in 32 meg chunks.
*/

nchunks = (512 * 1MEG) / CHUNKSIZE;
for (i--0; i<nchunks; i++) {

dm_r_d_invis(sid, hanp, hlen, token, off, CHUNKSIZE, bur);
dump_data_to_arc.hive(hanp, hlen, off, bur);
off += CHUNKSIZE;

}
dm_release_right(sid, hanp, klen, filetoken);

/*

* Store an DM application specific information, such as the file size,
* file handle, etc., with the data
*/

dump_myinfo_to_archive(hanp, Men);
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/*

* Check the file change indicator to see if the file changed
* while we were doing other things. If not, then set a managed

* region on the file
*/

dm_request_right(sid, hanp, hlen, filetoken, DM_WAIT, DM_EXCL);
dm_get_fileattr(sid, hanp, hlen, filetoken, DM_AT_CFLAG, statbuf);

change_end = statbuf.st_change;
if (change_start !=change_end) {

en-_msg(_ile changed, bailing..An");
do deanup0;

)

/*

* Set up the managed regions so that the first 64K won't cause events
* to be generated, but a foray into the rest of the file will generate
* events

*/

rgnbuf[0].rg_off = 0;
rgnbuf[0].rg_size -- FENCESIZE;
rgnbuq0].rg_flags = DM_REGION NOEVENT,
rgnbuq 1].rg_off = FENCF_IZE;
rgnbuf[1].rg_size = (512 * 1MEG) - FENCF_IZE;
rgnbuf[ 1].rg_flags = DM_REGION_RFAD IDM_REGION_WRITE I
DM_REGION_TRUNCATE;

dm_set_region(sid, hanp, hlen, filetoken, 2, rgnbuf, &retrgns);

J*

* Punch a hole in the file. We assume that we know that what the

* rounding constraints are so that we don't have to do a dm__probe_hole0
*/

dm_punch_hole(sid, hanp, 111en, token, rgnbuf[ 1].rg__off, rgnbuf[ 1].rg._size,
&roff, &den);

/*
* We're done. Release the token

*/

dm_respond_event(sid, filetoken, O,(void *)0, DM_CONI'INUE, 0);

4.2 Stagein

This example will stage in the file that was staged out in the above example.

There is a master daemon that receives messages from the kernel, and sends them on to

worker bees for processing. The master daemon is only monitoring the .read, write,

and t:runcat.e managed region events in this example for the filesystem/'case. There is

some magic here that is not shown. The master daemon knows about, and has access to,
two other sessions that are used to perform event-specific handling. Information is shared
between the master daemon and these other processes through some application-specific
mechanism that is not shown. This could be shared memory, a socket, a well-known file,

or any other mechanism. The details are left to the dazed reader.
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The following concepts are illustrated:

• Sharing of tokens and sessions

• Setting event disposition

• A simple get_.event loop

• Having a master daemon move an event to another session

• Complex lock upgrade

• Setting managed regions

extern dm_sessid_t rw_sid, trunc_sid;

void *fs_hanp;
void *msgbuf;
size t fs_hlen;

size_t msgsize, msgbuflen;
dm_sessid_t sid;
din_token t fs_token, newtoken;
dm_event_set_t eventset;
dm_eventmsg_.t *msg;

if (dm_init_service 0 == - 1) {
err_msg("Can't initialize DMIkn");
return(0);

}

dm_create_session(DM_NO_SESSION, &sid, "generic_app");

[*

* Since we'll be communicating with other processes, we do some
* magic setup to get their sids, establish communications channels,

* etc. We could use dm_send event0, stuff the data in a shared memory
* region, open a socket, or whatever
*/

setup_communications(sid, &rw_sid, &trunc_sid);

dm_path_to_.fshandle("/test", &fs_hanp, &fs_hlen);

/*

* Now get a token and rights so that we can set the disposition
* of events
*/

dm_create_userevent(sid, 0, (void *)0, &fs_token);

dm_request_right(sid, fs_hanp, fs_hlen, fs_token, DM_WAIT, DM_EXCL);

/*

* Set the disposition of the events we want to monitor
*/

DMEV_ZERO(eventse0;
DMEV_SET(DM_READ, eventse0;
DMEV_SEI'(DM_WRITE, eventset);
DMEV_SET(DM TRUNCATE, eventse0;

dm_set_disp(sid, fs_hanp, fs_hlen, fs_token, &eventset, DM_MAX_MSG);

dm_release_right(sid, fs._hanp, fs_hlen, fs_token);

144



Themasterdaemonnowentersasimpleloopwhereit will spendall its time.It simplyasks
theDMAPI for moremessagesanddispatchesthemto itsworkerprocesses.

/.

* Find out the size of the largest message that can be delivered
* on this filesystem. We use this to size an event buffer to get
* an arbitrary (16 in this example) number of messages at the same
* time.
,1

dm__get_config(fs_hanp, fs_hlen, DM_MAXMSG_SIZE, (long)&msgsize);
msgbuflen = msgsize * 16;
msgbuf = (void *)malloc(msgbuflen);

/*

* Enter a simple loop, looking for messages. We don't worry about

* resizing the buffer
*/

for C;) {
dm_get_events(sid, msgbuflen, msgbuf, &reLmsglen, O, DM_WAIT);
msg = (dm_eventmsg_t *)msgbuf
while (msg != NULL) {

[*

* For read and write events, we send them to other processes
* with 'well known' sids that are handling these things.
*/

if (msg->ev_type == DM_READ IImsg->ev_type -- DM_WRJTE) {
dm_move_event(sid, msg->ev_token, rw_sid, &newtoken);

} else if (msg->ev_type _ DM_TRUNCATE) {
dm_move_event(sid, msg->ev_token, trunc_sid, &newtoken);

) else {
err_msg ("Unknown event type_n");
dm_respond_event(sid, msg->ev_token, 0,(void *)13,

DM_ABORT,EINVAL);
continue;

}
msg = DM STEP_TO_NF_Xr(msg, dm_eventmsg_t *);

)
)

The worker bee processes also do some initial setup, which won't be shown. For a simple

stagein, we'll assume we've receive a DM RBAD event on a managed region. We join our
fearless process at the point in which it ha_received the event that was directed to it from

the master daemon, and is starting to reload the data.

int change_start;
void *lump;
size_t hlen;
size_t nchunks;
size_t retrgns;
dm_off_t off;
dm_size_t len;

dm_fight_t right;
dm_sessid_t sid;
dm_stat_t statbuf;

dm_eventmsg..t *msg;
dm_data_event_t *read_event;
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dm_region_t rgnbuf[ 11;

msg = eventbuf;
read_event =DM_GET_VALUE(msg, data,dm_data_event_t *);

hanp = DM_GET_VALUE(read_event. handle, void *);
hlen = DM_GET_LEN(read_event, handle, size_t);

]*

* Check to see what the rights are that came with the message. If
* they aren't exclusive, we must go get them
*/

dm_query_right(sid, hanp, tden, msg->ev_token, right);

if (right _ DM_SHARED) {
/,

* We really need exclusive. We'll try to upgrade the lock,
* but if that fails, we'll have to drop it and go to
* sleep.
*/

if (dm_request_right(sid, hanp, lflen, msg->ev_tokea, DM_EXCL,
DMNOWAIT) _----1

{
if (errno l= EAGAIN) {

err_msg("Can't upgradelock,n");
do_cleanupO;
return(I);

}
/*

* Before we drop the lock, get the file change indicator
*/

dm_geLfileattr(sid, hanp, hlen, msg->ev_token, DM AT_CHUG,
stathuO;

change_start = statbuf.dt_change;

dm release_right(sid, hanp, hlea, msg->ev_token);
dm_requesLright(sid,fshanp,fshlen jnsg-

>ev_token ,DM_WAIT,DM_EXCL);

/*

* Now that we've come back from sleeping, see if the file changed.
* If so, we just bail.
*/

dm_get fileattr(sid, hanp,hlen,msg->ev_token,DM_AT_CFLAG,statbuf);
if (statbuf.dt_change [=change_sta_,t) {

err_msg("File changed. Bailing..Aa");
do_cleanup0;
return(l);

}
}

} else if (fight = DM_NONE) {
dm_requesLright(sid J_anp,hlen,msg->ev_token,DM_WAIT,DM_EXCL);}

}

The worker bee is now at the point where it has exclusive access to the file. This is needed
for dm_write_invis0.

/*
* Now that we have exclusive access to the file, we need to
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* go off and find where we stored the file's data in our

* repository
*I

offset = DM_GET_VALUE(read_event, offset, dm_off_t),
len = DM_GET_VALUE(read_event, len, din_size_t);

find_our_file(hanp, hlen, offset, len):

]*

* Restore the data for the file.

* Well assume that the file length is some nice integral multiple
* of our chunksize;
*/

nchunks = len / CHUNKSIZE;

for (i--O; i<nchunks; i++) {
get_data_from_archive(hanp, hlen, off, buf);
dm_write_.invis(sid, hanp, hlen, token, off, CHUNKSIZE, bur);
off += CHUNKSIZE:

}

/*

* Clear the managed region
*/

rgnbuf[0].rg_.off = 0;
rgnbuf[0].rg__size = 0;
rgnbuf[0].rg_flags = DM_REGION_NOEVENT;
dm_set_region(sid, hanp, hlen, msg->ev_token, 1, rgnbuf, &retrgns);

]*

* We're done. Release the token
*/

dm_respond_event(sid, msg->ev_token, 0,(void *)0, DM_CONTINUE, 0);

4.3 DMAPI Status

The current status of the DMIG is that the V2.0 version of the interface specification is out

for industry review. Several companies are actively prototyping the interface, and some are
close to having product available in the marketplace. Below is the status of several

companies polled for their stance regarding the DMAPI:

1" Convex - Development under way for C-Series platforms for NAStore product.
Development underway for HP platforms supported as data management platforms.

Plans to port DMAPI to SPP product line in Q1-Q2 1995.

2" Hitachi Computer - Development underway to provide DMAPI on Veritas file

system to integrate with Epoch product.

3: IBM - Prototyping underway. No firm plans to release support
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4." SGI - Will release support for DMAPI in first half of 1995 in their XFS file
system.

5." Sunsoft - Plan is to watch marketplace. No plans currently exist to support
DMAPI.

6: Lggeat- "Legent, through its acquisition of Lachman Technology, has been behind
the DMAPI interface ever since the group began meeting. We believe in the goals of
the group and anxiously await adoption of the interface by UNIX operating system
vendors. DMAPI will strengthen these platforms and will help vendors like Legent
offer its storage management products across the broadest range of available
systems."

Although not all vendors have committed resources to the DMAPI, it is clear from the

above list, that several vendors believe that it is a viable interface and worth investing in.
Given that the early adopters of the interface are successful in the market place, other
companies are likely to put plans in place to formally support the DMAPI.

5.0 UniTree+ and the DMAPI

In section 2.0, several of the deficiencies in UniTree+ were described. It fundamentally is a
result of the fact that UniTree+ does not virtualize the native file system. What was not
discussed in section 2.0 was that UniTree+ has the capability to handle 1,000,000+ files
and many terabytes of data in the archive. The combination of UniTree+ and an access

method that virtualizes the native file system yields a product that provides the functionality
and performance of native file system accesses, and the ability to support very large
archives with high data ingestion and retrieval rates.

5.1 Standard UniTree+

UniTree+ as shipped today has an architecture that consists of a the following major
blocks:

|. Nameserver - A server that maps pathname to capability ID. It supports a

namespace that looks very similar to traditional UNIX 9 file system namespace.

_._rlX is a registered trademark of UNIX Systems Laboratories, Inc., a wholly owned subsidiary of Novell,
Inc.
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2: Disk Server- Theserverresponsiblefor providingmagneticdiskcachefor datain
therepository.All accessmethodsreadandwrite throughthediskcache.Nodirect
readingorwriting of tapeis supported.

3" Tape Server - The Server responsible for moving data to and from the tape
system(s) and the magnetic disk cache. Provides mapping for capability ID to tape
location mapping.

4: Access Servers - Daemons that provide the FFP and NFS protocols.
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Figure 1: UniTree+ Today

The problem areas in the above architecture reside in the access servers and the name
servers. All accesses traverse a network protocol. Even same machine accesses go through
the localhost interface. The bulk of the slowdowns in the UniTree interface is because of

latency associated with small transfers. This is especially true for metadata operations. If
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you view the graph below comparing native HP/UX l° file system operations versus
• , 11 ....

UmTree+ running on the same HP system, you wdl notice a substanUal &fference in wall
clock execution time. Times shown as. 1 seconds returned zero seconds when measured

with the HPIUX time command because the granularity of wall clock time is 1 second.
There was no effort made to optimize the times shown below, but they are instead just an
indication of relative execution times between native file system operations and UniTree+.
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Figure 2: Performance Graph of Native File System versus UnlTree+

All of the files created in the above test were of zero length. LIT 10,100,1000,10000 refers
to UniTree performing the operation listed on 10,100,1000,10000 files respectively, where
Native 10,100,1000,10000 refers to the same operations executed on the Native file
system and 10,100,1000,10000 files respectively. Creates of zero length files in UniTree+
involve primarily the NFS access daemon and UniTree+ name server. Replacement of
those two servers in UniTree+ with native file system operations will dramatically improve
the metadata operations in the resulting HSM.

_°HP/UX is a registered trademarkof Hewlett Packard Corp.

"HP is a registered trademark of Hewlett Packard Corp.
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5.2 Convex Virtual Disk Manager (CVDM)

The Convex Virtual Disk Manager (CVDM) does exactly what the name implies. It's
function is to control space allocation in native file systems using the DMAPI. It currently
runs on ConvexOS and HP/UX systems controlling the UFS native file systems. The
major functional blocks are as follows:

1: Migd - Responsible for startup and shutdown of system.

2: SSD - Responsible for creation of daemons for each file system put under CVDM
control.

3: Migdmon - Daemon responsible for interfacing with the DMAPI to catch events and
start actions required by the events.

4: Migout - Responsible for scheduling migrate out processing.

5: Migin - Responsible for migrating in data as a result of an access to non-resident
data within a file.

6: Interface Manger - Responsible for communication with UniTree+ back end.

The structure of the daemons looks as follows:
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Migout
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Migtrunc
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Figure 3: CVDM Server Architecture

The interface manager and movers are responsible for communicating with the UniTree+
back end. As a result of the separation of CVDM from the UniTree+ archive portion,
multiple instances of CVDM can communicate with multiple instances of UniTree+. The
following diagram illustrates a possible configuration:
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Configuration Example

The above example configuration shows a configuration where the access servers are
distributed over three distinct server platforms. The archive servers are also distributed over
two distinct server platforms. This allows the site to tailor their system to meet the load that
their environment places on the servers. If the system tends to be a read mostly system,
increasing the number of access servers improves performance of the data retrieval. If a site
uses their system in a write mostly environment, increasing the number of UniTree+
archive server platforms allows a system to handle very large data ingestion rates.

The architecture of a system running CVDM and UniTree+ on the same system appears as
follows:
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CVDM

Figure 5: CVDM/UniTree+ Architecture

As shown above, the user application accesses the file data exactly as it would in a non
HSM environment. Performance on resident files has shown to have < I% deviation from

native file systems not under HSM control. Except for delays for non resident files, the
HSM is completely transparent to the application.

Migration in the current system transfers data from the native file system, via CVDM
movers, to the UniTree+ disk cache, via UniTree+ disk movers. The data in the disk cache

is marked to purge immediately and is therefore scheduled to move to tape from the disk
cache in the next UniTree+ migration round. Requiring files to move from native disk to
the UniTree+ disk cache has benefits, but also introduces some problems. The benefit of
caching data is it allows remote CVDM servers to transfer data at network speeds. Data
then is written to tape at tape speeds. The disk cache acts like a rate matching buffer
between the network and tape devices. Tape devices are never tied up waiting on network
transfers. The drawback is that the UniTree+ disk cache must be large enough to hold the
largest file being migrated. Moreover, for local CVDM servers, there is no need for the rate
matching buffer because the data can come l¥om local disk. Non of these issues are
architectural in nature, but instead are a result of merging CVDM and UniTree+ with

extremely minimal changes to the UniTree+ base. In fact, UniTree+ can support both
CVDM access servers and the existing UniTree+ access servers simultaneously.

Migration rounds in CVDM can be initiated in a variety of ways. Administrators can start a
migration round via cron jobs or manually. Candidate selection is also configurable. A

utility, migfind, scans the UFS name space looking for possible candidates. Weights are
assigned to file attributes like size, modification time, creation time, owner, etc. Migfind
then generates a sorted list of candidates to hand to migout, which in turn initiates
migration. Migration rounds can also be initiated when space in a file system crosses preset
thresholds. In this case, the system will first look for files that are migrated, but whose data
is still cached in the file system. For these files, space can be freed by punching a hole in
the file with the dm_punch_hole0 call. If enough space is not freed by pruning cached
data, a full migration round is initiated.
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$.3 CVDM Futures

In future releases of CVDM, the UniTree+ tape mover and the CVDM disk mover will be

collapsed into a unified mover for local CVDM servers. This unified mover will only be
used for the local CVDM case so the rate matching nature of the UniTree+ disk cache will
be retained for the remote servers. The use of a unified mover will dramatically decrease

the overhead associated with migration from local CVDM servers.

Remote CVDM servers benefit greatly from buffering data in the UniTree+ disk cache. For

large files, it may desirable to start the migration of data from the UniTree+ disk cache to
the tape archive prior to completely transferring all of the file data. This is especially true
for high bandwidth networks like HIPPI which can transfer data at rates above existing
tape transports, or FDDI combined with low transfer rate tape drives. The UniTree+
system will be extended to support this.

6.0 Summary

The DMAPI has the potential to increase both the availability and quality of HSM products
while providing functionality only available in the kernel intrusive implementations of
today. As is usually the case, availability of the DMAPI will be driven by the market place.
If customers ask for it, or as competitors begin winning sales because they have it, more

OS and HSM vendors will deliver products based on it.

I1] Information in this section was obtained from the Data Migration Interface Group -

Interface Specification. Version 2,0. This document is available via anonymous VI'P at
internet address 143.127.0.2

155





N95-24121

Constraint Based Scheduling for the

Goddard Space Flight Center Distributed Active Archive Center's
Data Archive and Distribution System

Nick Short Jr. - Information Science and Technology Branch
NASA - GSFC
Greenbelt Road

Greenbelt, MD 20771
301-286-6604

short@ dunloggin, gsfc.nasa.gov

Jean-Jacques Bedet and Lee Bodden - Hughes STX
7701 Greenbelt Road, suite 400

Greenbelt, MD 20770
301-441-4285 Fax (301) 441-2392

{bedet,bodden} @ daac.gsfc.nasa.gov

2--

4/3  7

Mark Boddy, Jim White, and John Beane - Honeywell Technology Center
Honeywell Technology Center

3660 Technology Dr.

Minneapolis, MN 55418
612-951-7355 Fax 612-951-7438

{boddy,j white,beane } @ src.honeywell.com

Abstract

The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has
been operational since October 1, 1993. Its mission is to support the Earth Observing
System (EOS) by providing rapid access to EOS data and analysis products, and to test
Earth Observing System Data and Information System (EOSDIS) design concepts. One of
the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's
Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an
estimated several Petabytes (10 ^ 15) of data will be permanently stored. Accessing that
amount of information is a formidable task that will require innovative approaches. As a

precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has
implemented a prototype of a constraint-based task and resource scheduler to improve the

performance of the DADS.

This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell
Technology Center in cooperation with the Information Science and Technology
Branch]935, the Code X Operations Technology Program, and the GSFC DAAC, makes
better use of limited resources, prevents backlog of data, and provides information about
resource bottlenecks and performance characteristics. The prototype which is developed

concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as
ingestion and distribution with priority, precedence, resource requirements (disks and
network bandwidth) and temporal constraints. HTRS supports schedule updates,
insertions, and retrieval of task information via an Application Program Interface (API).

The prototype has demonstrated with a few examples, the substantial advantages of using
HTRS over scheduling algorithms such a First In First Out (FIFO) queue. The kernel
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scheduling engine for HTRS, called Kronos, has been successfully applied to several other

domains such as space shuttle mission scheduling, demand flow manufacturing, and
avionics communications scheduling.

Introduction

The main objective of the Code X Operations Technology Program (X-OTP) is to provide
advanced techniques in order to reduce NASA's operational costs by focusing on reusable
software technology. In addition to numerous technologies such as electronic

documentation, database management systems, system diagnosis, and data analysis tools to
name a few, one of the successful areas of X-OTP has been the application of planning and
scheduling technologies to missions operations throughout NASA. In cooperation with the

GSFC DAAC and Honeywell Technology Center, X-OTP has initiated a program to apply
scheduling technology to various areas within the EOSDIS. In addition to providing local
management for this project, the Information Science and Technology Branch, which is
part of the GSFC supercomputer facility or the Space Data and Computing Division, has
been providing its Intelligent Information Fusion System (IIFS) as a modular, end-to-end,

advanced prototype system for testing these new technologies. Free from many
requirements of operational systems, this prototype system is being used to guide several
of the technological extensions for this scheduling project.

This paper presents the first phase of this project by discussing the capabilities of the

Honeywell Task and Resource Scheduler (HTRS) as they apply to the scheduling of
operations in large mass storage systems. The GSFC DAAC architecture is briefly
introduced and the main DADS functions are described as they relate to mass storage
issues. The approach used to solve scheduling issues and the specific DADS scheduler
requirements is then explained. The architecture of the scheduler, its domain model, and an

application Program Interface (API) to communicate with the scheduler is also presented.
In particular, the paper describes the application of a constraint-based scheduling to a mass
storage system for the management of data ingestion, dissemination over a network

environment, and distribution of datasets copied to tapes. Due to the large number of daily
tasks and their dependencies, the slow seek time on tapes, and deadlines which must be

met, a First In First Out (FIFO) scheduling algorithm, as well as other queuing approaches,
is not adequate. HTRS increases the throughput of the various DAAC activities by making
efficient use of the DAAC's computer resources. The HTRS is an adaptive, dynamic
scheduler capable of modeling numerous system resources such as disk storage, robotic
devices, processors, memory, and network bandwidth. HTRS handles resource

contention, prevents deadlocks, and makes decisions based on a set of defined policies.
By modeling database operations as tasks with priority, precedence, duration, resource

requirements and temporal constraints, HTRS efficiently supports schedule updates,
insertions, and retrieval of task information.

General Scheduling Issues

Given many of the misconceptions about scheduling, this section will cover a brief

summary of the common definitions and topics surrounding data processing scheduling for
those readers not familiar with the terminology in the following sections. In general, most
non-real-time Operating Systems (OS) handle task management by assuming that tasks

operate independently of each other and that execution characteristics cannot be accurately
determined a priority. Hence, simple queuing methods dominate this category, often
providing sub optimal solutions (e.g., FIFO scheduling). The UNIX OS, in fact, was
designed for general purpose workstations where little is ever known about task
characteristics.
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Improvementsto theseapproachesrequireananalysisof theoperatingcharacteristicsof
typical tasks,suchasdeterminingif taskshavepriority or deadlines,arrive periodicallyor
arbitrarily, operate in a uniprocessor/multiprocessoror heterogeneous/homogeneous
environments(i.e., differentor sameprocessors),exhibit predictableresourceproperties,
andorganizeintoadataflow graph(i.e., taskswhoseexecutionprecedesand passesdata
to others). Theseimprovementsareconstrainedby the operationalrequirementssuchas
trying to minimize task completion time, demandingthat most or all tasksmeet their
deadlines(i.e., soft real-timeor hardreal-time), andallowing tasksto bepreemptableor
nonpreemptabletonameafew.

Basedon thesecharacteristics,the scheduling problem can be defined as given a set of
tasks T associated with a subset C of the aforementioned constraints, determine the

execution sequence, if possible, that best satisfies C. Two basic types of scheduling
approaches exist: static (or deterministic) and dynamic (or non-deterministic). Static
schedulers create schedules off-line after all task information has been collected while

dynamic schedulers determine schedules on-line during continuous data collection. Any

static scheduler is optimal only if it produces schedules that satisfy C whenever any other
scheduler satisfies C. A dynamic scheduler, however, produces an optimal schedule if it
always produces a feasible schedule when a static scheduler with complete information can
create one. Obviously, static schedulers are always sub-optimal when the collected
information changes before the schedule is produced, regardless of which scheduling
algorithm is used. While dynamic schedulers suffer less from this problem, they incur a lot
of overhead due to the cost of constantly collecting information. For this reason, many
schedulers utilize a hybrid approach where scheduling is done off-line while adjustments
are made on-line.

Related to this issue, schedulers are also classified as adaptive or non adaptive depending
on whether the environmentprovides feedback to the scheduler. That is, the scheduler's
control mechanism changes in response to system histories or trends. Dynamic schedulers
are almost always adaptive. Of course, the type of information collected determines how
well the scheduler performs. Estimates of task duration can be based upon best, average,
or worst-case estimates depending on optimism or pessimism. Other statistics can include
modeling the average number of tasks arriving for particular times, hot spots for resource
usage, inter-task communications costs, etc. Determining how refined the statistics model
always depends on the performance requirements, which often change to meet evolving
bureaucratic policies.

Institutional requirements usually determine the control architecture of the scheduling
environment. For example, Centralized systems such as shared memory models are those
where processors essentially operate in a group where inter processor communication costs
are minimal with respect to processor execution costs. By contrast, decentralized systems
such as wide area networks (e.g., the DAAC's) imply high inter processor communication
costs. Often times, centralized or distributed scheduling means that the computing
environment is centralized or decentralized. This should not be confused with the much

harder problem of using multiple schedulers to control a distributed environment versus
using a centralized scheduler to control a distributed environment.

Adding to the confusion, the power of scheduling algorithms is often overestimated. For
example, scheduling tasks with arbitrary precedence between tasks for multiprocessors is
proven to be NP-hard (i.e., essentially known to take an exponential number of steps as a
function of the number of tasks) with only unit execution time, regardless of whether tasks
are preemptive or non preemptive. Hence, because most of the non NP-hard algorithms
(i.e., polynomial) are too restrictive, schedulers realistically must utilize heuristic
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approaches(i.e.,smartguessing)whilesearchingfor feasibleschedules.This involvesthe
constructionof afunction,oftencalledan objective function, that encapsulates a notion of
"goodness" for evaluating one proposed schedule versus another during the search through
the space of possible schedules. Objective functions can be explicitly represented by
numeric formulae for simple comparison or they can be implicitly captured in the
scheduling policy algorithm. Regardless, the objective function or scheduling policy
algorithm should be flexible enough to change as the institution governing the processing
environment modifies its notion of a good schedule. For instance, an institution may want
to guarantee that all or most task deadlines are met one day while on another day, it may
wish to minimize completion time of tasks.

Scheduling issues with mass storage systems

Today's mass storage systems are critical resources that usually must operate in a complex
and changing institutional environment. These institutions must process large volumes of
data while providing efficient and reliable service to a large number of users, who typically
request resources at unpredictable times. Satisfaction of these users is critical in order to
justify the enormous investment required to run these large institutions. Also, proper
decision making about which resources is absolutely necessary for controlling the high cost
of these computing environment. Scheduling technologies allow institutions to provide
services according to reasonable user deadlines while providing information about which
resources are bottlenecks that must be alleviated with the purchase of appropriate hardware.

These characteristics are certainly true of the EOS architecture and, in particular, are being
evaluated in the context of the GSFC DAAC -- a system that is intended as an operational

testbed for EOS. Although nowhere near the size of the final EOS system, the GSFC
DAAC is estimated to process 250 SeaWiFs orders per day, corresponding to 40 GB of
data. In addition, 20 GB of non-SeaWiFS products are expected to be ordered each day
while 26 GB of new data will be ingested. Due to the large number requests and the large

volume of data to process, manually generating feasible schedules will not be possible.
Moreover, using the FIFO queue approach is not an acceptable solution because it does not
make the best use of the resources available (e.g., tape drive, disk space), it doesn't have

the ability to guarantee that most deadlines are met, and it provides little information about
resource bottlenecks.

Of particular note, each request (e.g., distribution) has several tasks that must be scheduled
individually. For example, to process an order for data requested on an 8-mm tape, the
tasks may consist of retrieving the data from near-line devices, transfer the files to a staging
area, and then copy the files to an 8-mm tape. Overall thousands of tasks with predecessor
and successor tasks, each with specific needs for resources, must be scheduled and tasks
cannot be treated equally. Requests for data to be sent over the network may be given a

higher priority than data requested on tapes. Hence, the schedule should reflect these
DAAC policies that determine, for example, deadlines and priorities.

Given that many of the operations involve transfer from one medium to another, proper

migration from slower devices such as mass storage to faster devices is necessary to
minimize average access times. That is, anticipation of requests should cause data to be
moved into faster devices "just in time" for the request to be satisfied. This, of course, is
similar to the notion of "locality of reference" in any memory hierarchy where the storage
management system pre-fetches blocks of data in anticipation of future access to those
blocks. Only here, the pre-fetching is also based on models of the external task
environment in addition to load characteristics of the tasks, implying that a powerful
scheduler can reduce access times by performing tasks just in time for delivery.
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Becauseof the needto quickly anticipatetrendsin theexternaland internal processing
environment,anotherchallengeis to haveaschedulethatcanbedynamicallyandquickly
updatedwhennewordersarereceived,whensomeof theresourcesbecomeunavailable
duringaperiodof time,orwhenagivenresourcemustbe restrictedto improvetheoverall
performanceof thesystem.For anexampleof this lastcategory,testsconductedat the
DAAC haveshownthatthenumberof concurrentNFS actionsbetweentheUnitreecache
andthedistributionstagingareahadto belimited to six or sevenin order to achievean
acceptablethroughput. Thus, the schedulershould model resources such as NFS
resourcestoanticipatetheproperlocalitiesof reference.

While the anticipationof manyactionscanbe automated,manyexternal eventsto the
systemrequiresthata humanoperatorbe presentto makeadjustments.That is, in any
symbioticproductionenvironmentinvolvingbothcomputersand humans,tools mustexist
to helpoperatorsidentify thestatusof theordersandtheir respectivetasksastheyrelateto
policiesprovidedby management.For example,an estimatedcompletiontime for each
taskcouldbepresentedto theoperatorin orderfor theoperatorto communicateinformation
backto highpriority users.

Theseestimatesshouldbebasednot only on theapproximatedurationof eachtaskbuton
the availability of the resources.In fact the estimatesfor eachtask could be complex,
however, the actual and the estimated times can be continuously compared so that better
statistical approaches can be introduced. After conducting several tests simulating next

year's workload, it became clear that scheduling was very important.

GSFC DAAC architecture

The GSFC DAAC has been developed to support existing and pre-EOS Earth science
datasets, facilitate scientific research, and test EOSDIS operational concepts. Its design is
based on the EOSDIS functional requirements and the requirements generated by specific

Science projects such as Sea-viewing Wide Field-of-view Sensor (SeaWiFS).

GSFC DAAC has three main components illustrated in Fig 1. The Product Generation

System (PGS) receives low-level data products and generates higher level data products.
The Data Archive and Distribution System (DADS) role is to archive all new data products
and to distribute over the network or on a variety of physical media, data ordered by
researchers. The Information Management System (IMS) is a data base of the data

holdings which can be searched, browsed by researchers to help them identify and order
data of interests.
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Figure 1 GSFC DAAC components

Although smaller than the overall facilities in the Space Data and Computing Division, the
GSFC DAAC has currently 731 GB of data archive but this number is expected to increase
to about 18 TeraBytes by FY97 [1]. To satisfy these requirements the GSFC DAAC has
the following hardware architecture.

• The IMS system with its Oracle data base runs on a dedicated SGI 4D/440 VGX.

• The DADS software and the Hierarchical Storage Management (HSM) system Unitree to
automate the migration and the stage operations, run on a SGI 4D/440 S. Data are archived
either on a Cygnet 1803 jukebox (1179 MB) with 2 ATG WORM drives or an RSS-600

Metrum Automated Tape Library (ATL) (8700 MB) with 4 RSP 2150 VHS drives. The

SGI 4D/440 S was too limited in terms of I/O bandwidth and ports. A SGI challenger L
(DADS2) has been acquired to handle all the distribution copies on tapes. There are
currently nine 8 mm drives, four 4 mm drives, and two 9 track drives attached to the
EOSDADS2 machine.

• There is a future plan to build a Backup system that will run on an SGI Challenge S. Its
function will be to keep a second copy of all data ingested at the DAAC.

• The PGS is composed of 3 SGI workstations. Two additional workstations are used to
do Q/A on the data.

• The DAAC's distributed environment includes two Ethernet Local Area Networks, and an
FDDI network.
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GSFC V0 DADS functions

The three main functions of the DADS are archive, distribution, and data management. The
archive function consists of accepting data products from outside the system, extracting

metadata, validating files, and updating the database. The distribution function retrieves
files from archives, stages them to a distribution staging area, reformats the data if

necessary (e.g., tar is the normal format for orders), and writes the data to tapes or to the
FTP staging disk. The DADS management handles the schedules, tracks DADS activities,
and aliocates/deallocates resources.

DADS V0 Scheduler

DADS

Manager
ti,,

Task & Resource

Scheduler

Application Program Interface

Task

Dispatcher

Execution

Monitor

Figure 2. The HTRS Scheduler's Architectural Environment

The DADS V0 Scheduler is responsible for scheduling actions and resources to ingest data
from a network to buffer disks, transfer buffered or cached data to a mass storage archive,
and to retrieve archived data upon request. The scheduler was developed concurrently with

the design and implementation of the GSFC V0 DADS. Consequently, the architecture and
interfaces must tolerate changes as the system design evolved. The current version of the
DADS software uses a multi-level priority queue algorithm, as a baseline system, to
schedule its activities, however; there are plans to integrate the Honeywell Task and
Resource Scheduler to the DADS for performance improvements. The baseline
architectural environment of the HTRS scheduler is depicted in Figure 2. This environment
continues to evolve, but its conceptual and functional characteristics remain stable, so many

system changes can be accommodated in the Application Program Interface (API).

The DADS Manager submits scheduling requests, handles errors, and retrieves schedule
information. The Task Dispatcher periodically queries the scheduler for a list of upcoming
scheduled activities to be executed. The execution monitor notifies the scheduler of events

that affect the schedule.
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Approach

Constraint envelope scheduling technology offers an attractive, proven method of meeting
the scheduling needs of data archiving and distribution. This technology, embodied in
Honeywell's enhanced implementation of the Time Map Manager (TMM), supports the

concept of a Temporal Constraint Graph (TCG) which can be used to represent multiple
projections of future system behavior, thereby providing rapid rescheduling with minimal
disruption in the presence of schedule uncertainty or changing policy situations.

The DADS V0 Scheduler is an application of the Kronos scheduling engine that is built on

top of TMM and designed to be adaptive and dynamic. Kronos has been successfully
applied to domains such as space shuttle mission scheduling, demand flow manufacturing,
and avionics communications scheduling. It has handled scheduling problems involving
20,000 tasks and 140,000 constraints, with interactive response times for schedule
modification on the order of a few seconds on a SPARC 10.

Scheduler Requirements

Detailed scheduler requirements were initially established for the DADS application, then
extended and adapted to encompass the scheduling needs of other NASA programs based

upon feedback from the IIFS. The following paragraphs summarize requirements at a high
level. They confirm the need to be appropriate to the application domain, to be compatible
with the target system, and to provide responsive performance reliably.

Domain Approptialg- Commercial scheduling tools sacrifice domain relevance to extend

their range of applicability, and hence their marketability. They often lack the capacity to
efficiently handle the precise scheduling needs of large, complex applications such as those

presented by EOS. In order to select or define a scheduling tool that is domain appropriate,
application-driven requirements must be established. Whenever possible, these

requirements should be based on multiple examples of domain operations and scheduling
functions using realistic data sets. They must include a quantitative demonstration so that
capacity and performance goals can be met simultaneously.

Since the GSFC V0 DADS is being developed concurrently with the prototype scheduler,

we were careful to maintain a high degree of generality in the scheduler implementation.
By first building a core scheduling capability derived from our Kronos scheduling engine,
and then extending that capability through specialization, we were able to meet the specific
needs of DADS while providing a scheduling tool that can easily be applied to similar
problem domains in EOS.

Stated as a system requirement, the scheduling core domain model must be compatible with
objects and functions required by the target application. Further, its customization

capabilities must support accurate modeling of every Schedule and relevant aspect of the

domain. Care should be taken to ensure that this model reflects the intended scheduling
policies and procedures of the application, and not the characteristics of analytical models
used to project system performance.

Details of the scheduling core domain model are described in the Domain Model section.

For the prototype scheduler, subclasses were created to capture application specific
attributes and relationships. These attributes may be used to carry system data through the
schedule or to support performance monitoring and analysis.
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By creating persistent requirement and persistent resource profile classes as subclasses of
the requirement class and resource profile class using an object-oriented model,
respectively, we were able to provide the necessary scheduler functionality with a minimum
of disruption. Persistent requirements have the option of specifying that they begin, use,
or end with their associated activity. This allows the resource allocation to be open ended if
desired.

To be effective, any tool must be functionally complete and be able to solve the problems
for which it is applied. A scheduler must enforce structural constraints (i.e., predecessor-
successor and parent-child relationships), temporal constraints (e.g., earliest start or
deadline), and resource availability constraints while carrying out the desired scheduling
and resource allocation policies in an automated fashion. In the prototype scheduler,
policies are currently encoded as functions and a domain-specific algorithm (as described in
the Scheduling Policy section.

We plan to eventually excise policy details from the scheduler by defining syntax for policy
specification. One possible solution would be to utilize a rule- or knowledge-based
approach to represent the numerous institutional policies. The major advantage of this
approach is that rules (e.g., if-then statements) can naturally represent situations when a
particular schedule is "good". Likewise, a dependence on rules allows for the
incorporation of several knowledge acquisition tools. In the IIFS, for example, the Advice
Taker/Inquirer (AT/I) allows users to enter and modify expertise in lucid forms such as
natural language. Should a policy chang e, a tool like the AT/I could be used to quickly
modify the appropriate rule governing that policy.

Compatible - The scheduling tool described here is designed be integrated as a functional
component into the target application system. It cannot dictate requirements to that system,
rather, it must adapt to the physical and logical demands of the encompassing system. The
scheduler must execute on available hardware running the specified operating system. It
must be able to communicate with asynchronous functional modules of application system
via standard interprocess communication system facilities.

The scheduler must also be linguistically compatible with the surrounding system. It must
be able to interpret and respond appropriately to requests for service and information. The
prototype scheduler meets this requirement in several ways. The scheduler includes an API
customized to the syntactic and semantic needs of the DADS modules with which it
interacts. An underlying set of basic API functions facilitates this customization.

The scheduler supports the notion of activity state. The exact states and legal state
transitions are defined for the application. In DADS, activities can be scheduled,
committed, dispatched, executing, complete, or failed. Additional states and even
additional state dimensions can be added as the need arises.

Responsive - Performance is often a critical requirement, but it is frequently overlooked in
scheduling. There are often assumptions that scheduling will be performed once in an
initial scheduling effort and that the resulting schedule will satisfactorily describe the actual
execution of activities. This view is seldom correct and certainly incorrect in data
processing scheduling.

We have segregated the total problem into two phases, planning (what to do) and
scheduling (when to do it). In other words, planners are allowed to substitute similar
tasks in order to find a set of tasks that have feasible schedules. Schedulers per se are
given a fixed set of tasks and only leeway in the selection of resources and start/end times.
Unlike the DADS and for that matter, the rest of EOSDIS, the IIFS utilizes the

165



planning/schedulingapproachto generatebrowseproductsin lieu of standardproducts
when computational constraintsare too great for standardproduct generation. For
example,computationallycheaper,yetlessaccuratetaskscanbe intelligently substituted
for expensivetasksin ordertobettermeetdeadlinesor minimizeresources. This situation
occursoften in imageprocessingwhereresamplingroutinescan reducethe imagesize.
The browseproductscanbeusedby usersto decidewhetherto initiate a standingorder
request. In this way, just as it wasone of the first systemsto suggestobject-oriented
programminganddatabasesfor theEOSDISdomain,theIIFS hasallowedfor thetesting
of risky, newideasthatmaynotyethavebeenconsideredwithin theoperationalDAACs.

Nevertheless,by making this distinction, we havenot only, made eachaspectmore
manageable,but wecan tailor the functionality and performanceof eachcomponent's
implementation to the needsof the application. Planning typically occurs before
scheduling, though replanning may become necessary. In the GSFC V0 DADS
application,thereisasmallsetof functionsto be performed(e.g.,ingestion,distribution).
Thesecanpossiblybepre-plannedin advanceanddescribedto theschedulerastasks(with
subtasks).

Theschedulermust,ondemandandin nearreal time, fit eachnewinstanceof a taskinto
thecurrentschedulein accordancewith taskprioritiesanddeadlineswhile ensuringthat
necessaryresourceswill beavailable. As actual eventsoccur in the executionof the
scheduler,it mustrapidly rescheduleto reflecttheimpactof theevent. It mustprovidedata
to support graphic presentation of the current schedule, and even allow operator
manipulationof tasks.

Reliable - The fault tolerance approach employed by the target application must be

supported by the scheduler. In the GSFC V0 DADS this translates to requirements for
redundant archiving of schedule information and rapid recovery of the schedule after a
failure. The prototype scheduler does not fully include these features at present. However,
basic mechanisms needed for reload are present in the script processor described in the
Prototype Environment section. Also, previous schedulers based on the Kronos engine
have included schedule storage and reload capabilities.

Prototype Environment

The DADS V0 Scheduler is being developed concurrently with the GSFC V0 DADS.
Consequently, a stand-alone environment was needed in which to test and demonstrate
scheduler functionality. The operation of components external to the scheduler was
simulated via a script processor as shown in Figure 3. The script processor is controlled
from a demonstration Graphical User Interface (GUI) that displays schedule activities and
resource utilization profiles. Snapshots of the demonstration GUI screen may be seen in
Figures 6 and 7. The GUI supports selection and execution of an event script which the
script processor translates into API commands that it sends to the scheduler.
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A typical script initializes the scheduler by describing the resources available for
scheduling, commands the creation of activities to be scheduled, and simulates execution
events such as completion of execution. The script also notifies the GUI as objects to be

displayed are created.

Graphical presentation of scheduler operation is visually convincing, but it is inconvenient
for testing and benchmarking purposes. Recently, auditing and test functions were added to
facilitate execution and validation of complex event scripts. The test function automates the

execution of scripts and the invocation of the audit function, which checks the schedule for

consistency and correctness.

Architecture of the Scheduler

The internal architecture of the scheduler is depicted in Figure 4. The base layer supplies

basic temporal reasoning capability. This includes objects such as uncertain time-points
and constraints, and functions for updating and querying the temporal knowledge base.

Application Specific (DADS) Program Interface

DADS Domain Model

Scheduling Core Domain Model

Generic Application

Program

Interface

Constraint Engine & Temporal Knowledge Base (TMM)

Figure 4. The Architecture of the Scheduler
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TheSchedulingCoreDomainModelsuppliesthebasicobjectsand functionsneededfor
schedulingandresourcemanagement.Combinedwith theGenericAPI, theselayersform
a coreschedulingcapability thatcanbeapplied to variousschedulingdomains. In the
DADS V0 Schedulerimplementation, the basedomain model wasextendedthrough
specializationandextensionto provideappropriatedomain-specificcapabilities,shownin
thefigureastheDADSDomainModelandtheDADSAPI.

Domain Model

Key object classes of the scheduling core domain model include resources, requirements,
activities and hierarchical activities. These are shown in Figure 5. along with related
objects classes of the DADS scheduling domain model.
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Figure 5. Key DADS Scheduling Object Classes
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An activity represents an action to be scheduled. Each activity has an associated main-
token which defines its end points in time and its possible duration range. An activity may
be linked to multiple resource requirements. These abstractly define attributes that must be
satisfied by the resources allocated to the activity. A subclass of the activity allows
hierarchical activity structures to be defined. These were used in the DADS scheduler to

implement tasks with component subtasks.

As an example, in the DADS application, a data ingestion task will have several subtasks.
The data buffering subtask requires access to the FDDI network and a specific amount of
space on one of the data ingestion magnetic disks. A subsequent archiving subtask
requires access to the data on buffer disk and space on the UNITREE archive magnetic
disk.

The core resource classes allow resources to be conceptually organized into pools using a
hierarchical name structure (which permits wildcards) and using a list of resource
attributes. Each resource has an associated availability that defines the maximum quantity
of that resource and its temporal range.

Specialization of the core object classes extend the hierarchy to include characteristics of the
target domain. In the DADS scheduler these specializations share a common parent class,
the DADS object, which defines attributes every DADS activity, resource requirement, or
resource must have. Only the client and dads-name attributes are shown in the figure.

Application Program Interface (API)

The Application Program Interface was specified formally by documenting data content
(i.e. fields and forms) of the primary information components (i.e. tasks, subtasks,
resources, etc.) exchanged between the scheduler and DADS subsystems. For each
command, the documentation details the participants in the exchange utilizing the
command, the conditions under which the command occurs, the intent (semantics) of the
command, and the scheduler's response to the command under both normal and error
conditions.

The following command categories describe the functions of the scheduler visible via the
API. The categories have been intentionally kept rather abstract and high level here. Not all
command categories have been fully implemented in the prototype scheduler.

Definition/Instantiation - Inform the scheduler of the existence of scheduling entities such
as activities (i.e. tasks and subtasks), resources, and abstract resource utilization
requirements. These commands do not cause scheduling to occur.

Modification - Change the specifics of information known to the scheduler. This category
encompasses only changes to the scheduling problem (e.g. relaxation of a deadline). It
does not include notification of real-world execution events.

Interrogation/Retrieval - Retrieve schedule and resource allocation information from the
scheduler. This information is based on the scheduler's model of the problem space, its

record of past events, and its projection of future events including resource utilization.

Schedulin_Rescheduling - Compute a new schedule with resource allocations. Commands
in this category may be invoked indirectly by commands in the Update/Synchronization
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category.Update/Synchronization- Inform theschedulerof the occurrenceof real-world
events(e.g.activity executioncompletion)whichmay affect the schedule.This category
alsoincludescommandsfor thetransferof responsibilityfor anactivity from thescheduler
to anothersubsystem(e.g.,anexecutionmonitoror dispatcher).

Notification - Inform another subsystem that a problem (or potential problem) has been

detected by the scheduler.

Communication Handshaking - Provide positive acknowledgment of information transfer.

Fault-Tolerance/Recovery. - Support for information backup and recovery from failures.

Scheduling Policy

The operation of the scheduler is controlled by scheduling policies. These are currently
captured in domain-specific, hard-wired algorithms for resource assignment and activity
scheduling.

The baseline resource assignment and scheduling algorithm is:

For each activity to be scheduled:

If the activity has component activities,
Schedule each of its component activities (i.e., apply this algorithm recursively).

If the activity is scheduleable,
For each resource requirement of this activity:

If a satisfactory resource is available for use without causing it to be
oversubscribed,
assign that resource to meet the requirement.

Availability implies that the resource is part of the resource pool
specified in the resource requirement and has the attributes specified

in the resource requirement.

-If no satisfactory resource is available,
apply the following stratagems in sequential order,

using the possible resources until one of them successfully eliminates
the oversubscription:

* Constrain the order of activities involved in the oversubscription:
Individually before the activity, or
Individually after the activity, or
Collectively before the activity, or
Collectively after the activity.

* Relax the deadline of activities involved in the oversubscription and
constrain the order of activities (as above)

* Constrain the order of parent activities of the activities involved in the
oversubscription (as above)

* Report failure [and Exit]
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If theactivity isstill scheduleable
andall componentactivitiesof thisactivityhavebeenscheduled,

Mark theactivityscheduled.

Thenupdate:

Theschedule'stemporalknowledgebase,

Thetimeboundsof all changedresourceutilizationprofiles.

Onethingto noticein thealgorithmis theemergenceof situationsto controltheschedulin.g.
For example,takethe situation wherethe schedulershouldscheduleactivities if the,r
resourceswon't possiblybe oversubscribed.This wasa DADS requirementthat other
domainsneednot beconstrainedto have.But, in its currentincarnation, it is hard-wired
into thealgorithm. Shouldthis change,thenthe algorithmmustbemodified, increasing
schedulermaintenancecosts. As new policies are incorporated, thesecosts will be
untenable. Hence,changingover to otherapproachessuchasrule-bases,will constrain
costsandallow for evolvability.

Scheduling Example

The operation of the prototype scheduler is revealed in Figures 6 and 7. In this simple
example, seven data ingestion tasks have been scheduled. Each task contains four subtasks
(not visible) and is represented in the display as a horizontal timeline. The solid portion of
the timeline indicates the earliest possible execution of the task. The dashed portion of the
timeline indicates scheduling flexibility between earliest execution and the task's completion

deadline.

At the bottom of the display, the resource utilization of a selected resource is shown. The

black profile line indicates expected resource utilization if all tasks execute as early as
possible. The gray profile line indicates possible resource utilization.
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Figure 6. Simulation of the Baseline DADS V0 Scheduling Approach (FIFO Queue)

In this figure, the tasks have been configured to simulate the baseline DADS V0 scheduling
approach. In the baseline approach, all resources needed by the component subtasks are
allocated to the task. Then tasks are then scheduled using a First-In First-Out (FIFO)
Queue. Additional constraints were added to enforce this queuing.

Parallel task execution occurs until resource utilization reaches 100%. The subsequent
tasks must wait for ongoing tasks to complete.

The deadlines of tasks 104 through 106 could not be met. These deadlines were removed,
causing the dashed portion of the timeline of these tasks to extend to infinity. Task 106
actually started AFTER it's completion deadline.

The resulting resource utilization is very inefficient. It has large regions of rather low
utilization an is spread over almost five hours.

Figure 7. Shows the same tasks scheduled using the full power of the HTRS scheduler.
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Figure 7. Efficient Automated Scheduling and Resource Allocation

Resource requirements were specified with respect to individual subtasks, and FIFO

queuing constraints were not imposed. The resulting schedule is clearly superior.

All tasks were scheduled within their deadlines. The scheduler has optimized resource

utilization (as evidenced by the compact profile). And the entire group of tasks requires

only slightly more than one hour. This leaves time for an opportunistic system to initiate
several tasks such as trend analysis routines, maintenance tasks for adding new system
components, or quicker service. Moreover, using less powerful hardware could lengthen
the overall duration, but still beat the performance of the FIFO approach.

This simple example shows that a constraint-based task and resource schedule can provide
substantial improvements in system performance over simple queuing schemes. What may
not be evident are the benefits it provides through rapid rescheduling in response to

unexpected events (e.g., resource failures), and through the automation of complex
scheduling policies. These performance improvements could translate into cost savings
through the use of less expensive hardware.
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Conclusion

The HTRS scheduler prototype has been successfully developed for the GSFC DAAC.

Special attention should be paid in the identification of the scheduler requirements and the
DADS domain model. Even though the prototype is still in its initial phase and it has not

yet been integrated into the DADS, the effort has been very informative. In particular, it
was demonstrated using realistic examples of DADS activities that a FIFO queue algorithm
can be extremely inefficient under certain conditions, and can drastically reduce the overall
performance of the DADS. The scheduler cannot only make better use of limited resources
and prevent a backlog of data, but it can also provide valuable information about resource

bottlenecks and performance characteristics. The next challenge will be to integrate HTRS
in the DADS, monitor its performance, and evaluate its benefits when running in a real
operational system such as the GSFC DAAC.

In the context of mass storage systems, scheduling can help ensure that timely service is
provided to users who expect a lot from these expensive computing facilities. Likewise,

scheduling can be used as a simulation tool to predict the performance from adding
particular hardware. By utilizing the same scheduling environment, these simulations can
be based on real information from the operating environment and can provide quality
information for decision makers. In some cases, decision makers may avoid costly
hardware purchases by tweaking the scheduling policy algorithm. Hence, the scheduling
policy algorithm must be flexible enough to be modified quickly in order to contain
software maintenance costs. Certainly, the use of scheduling will provide _tter service for
users, f_ter processing throughput, and _ costs.

In fact, many of the scheduling issues presented here have arisen throughout numerous
NASA applications. Over the years, the X-OTP has provided scheduling expertise to
various projects by focusing on rapid prototyping of new technologies for mitigation of
risk, technology transfer through continued software development from prototypes, and
reduction in cost through software reuse of generic tools. By working with Honeywell
Technology Center, X-OTP is further reducing software development costs by providing
difficult requirements to companies, who can then apply developed techniques to other
commercial domains such as aviation communications scheduling. By helping companies
expand into new markets, NASA, without incurring high maintenance costs, increases the

likelihood that dual-use commercial software will survive over the lifetime of lengthy
projects such as EOS.

X-OTP, on the other hand, requires feedback from projects whose requirements push the
state-of-the-art. As intended, the GSFC DAAC, through Hughes-STX, has provided this
feedback before the larger EOSDIS has gone into operational use. The GSFC DAAC,
however, is an operational system that cannot be interrupted with technology that is too
risky. Hence, prototypes such as the IIFS can quickly test very risky technology in an
end-to-end framework without adversely affecting operations. For one thing, the IIFS
was the first system at GSFC to suggest the use of object-oriented databases for the EOS
domain. Likewise, the IIFS was the first system to suggest the use of neural networks for
classifying remote sensing data -- a technique that is now widely accepted in remote

sensing circles. And, finally, the use of this particular scheduling software was based upon
a NASA internal R&D project (i.e., Directors Discretionary Fund) entitled _Near real-time
generation of Browse Products" and incorporated into the IIFS. Because of the

development of the IIFS and the close proximity to NASA projects, the Information
Science and Technology Branch has provided in-house expertise regarding emerging
technologies such as these. Moreover, in addition to applied research, the branch has
developed one of the DAACs operational quality assurance routines for the TOVS

174



pathfinderdatasets.Likewise, the SpaceDataand ComputingDivision, for which the
Information Scienceand Technology Branchis a part of, is currently GSFC's only
supercomputingfacility with anextremelylarge massstoragesystem(over 20Terabits);
thisenablesfeedbackregardingtechnologyintegrationof large,expensivesystems.All in
all, elaboratecollaborationssuchasthesewill obviouslyberequiredto evolveoneof the
most ambitious engineeringand information system projects, or namely, the Earth
ObservingSystem.
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Abstract

Digital recording may take advantage of many types of media, but usually a preferred type
of drive or transport emerges for each. In magnetic tape recording, two approaches have
emerged in which essentially the same medium is tracked in two radically different ways.
This paper compares the characteristics of Rotary- and Stationary-Head transports in an
attempt to establish which approach might be considered for a given application. The
conclusion is that in many cases there is no obvious choice based on recording physics and
that often the choice will be made on the experiential knowledge of the designer.

The Limits of Tape Recording

This paper restricts itself to digital recording, but in practice a tape transport does not know
the meaning of waveforms passing through its heads and media. These waveforms
experience an analog channel which has suboptimal frequency response as well as non-
linearities and various noise mechanisms. It is the discrete decision-making process of the

replay data separator which renders the entire machine digital. The channel coder in the
record section merely produces waveforms which are advantageous to a discrete data
separator. The impairments of the real channel result in a certain error rate distribution and
a suitable error correction strategy will be employed in order to meet the residual BER

demanded by the application.

Assuming an acceptable BER, tape-based data recorders are measured by the following
primary parameters: Unit cost, maintenance cost, cost per bit stored, transport and medium
size and weight, access time and transfer rate. Secondary parameters are figures which are
only critical in certain applications. These include environmental tolerance, power
consumption, speed range, startup time and so on. The storage density emerges as a critical
factor as an improvement allows the same job to be performed with a smaller, lighter
machine at a lower cost per bit. Storage density improves by paying attention to three
dimensions. Thinner tape allows a greater surface area in a given volume and allows better
conformity with the head. It does, however, require a substrate with higher tensile strength
and more precision in the tension control system of the transport. A reduced track pitch
increases density but requires a more accurate track-following mechanism, improved
means to reject crosstalk and a higher output medium to restore the noise performance.
Reduced bit-length along the track is the third dimension and demands heads with smaller
gaps, better head/tape contact, higher output media and channel codes with improved
figures of merit. In general an increase in density will raise the raw BER and require a
more powerful error correction strategy.

An improvement in superficial (or areal) density reduces access time as a shorter tape holds
the same data. Smaller reels have lower inertia and withstand harsh acceleration

environments better. The linear (along-track) density is primarily determined by magnetics
and coding, whereas the cross-track density is primarily limited by tracking accuracy which

is mechanically determined.
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Mechanical Considerations

The above criteria can now be examined from the alternative viewpoints of stationary and
rotary head implementations. [Reference 1].

As tracks of the order of 10 micrometers wide are in use today, clearly a single track tape is
a mechanical impossibility. A stationary head recorder will as a practical matter need to use
a significant number of parallel tracks across the tape and the bit rate will be divided

between them. These tracks will be recorded and played by multi-track head stacks. High
density machines will need active track following mechanisms physically to move the
headstack in compensation for tape weave, typically using piezo-electric or
magnetostrictive "muscles".

The track width and pitch are fixed and are determined by the head design. Crosstalk in the
form of mutual inductance may take place between the various magnetic circuits in the
headstack and this must be controlled by the introduction of spaces and/or shields between
the magnetic circuits which result in guard bands between the tracks. Photolithograpically
produced heads are better from the standpoint of mutual inductance because of their flat
construction, but spaces between the tracks are still inevitable because of the need to
arrange windings around the poles.

As an alternative interleaved headstacks may be made in which only one in N tape tracks is
furnished with a magnetic circuit. Depending on the bit rate required, the transport may
have N headstacks or may transport the tape N times through the machine in a serpentine
fashion, indexing the headstack to one of N places on each pass. If N headstacks are used,
each must have its own track following actuator. A serpentine recorder needs only one
headstack actuator, but its travel will be much longer.

To record the same bit rate, the rotary head recorder produces a large number of slant
tracks by the rapid rotation of a small number of heads. These tracks can be nearly
perpendicular to the tape motion in transverse scan recorders or nearly parallel to the tape
motion in helical scan recorders. In both cases the tracking mechanism relies upon the
cross-track component of tape linear motion which can thus be controlled by capstan
phase. The track pitch is controlled by the linear tape speed and is independent of the
dimensions of the head. It is possible to have a machine which supports more than one
track pitch so that, for example, tapes of various coercivities can be used. The heads on a
rotary scanner are not in a stack, but are distributed around the periphery so that mutual
inductance effects are negligible. Rotary transformers are required to couple the rotating
signals with the stationary signal processing circuitry and these will be prone to crosstalk,
although modem multi-head machines have rotating pre-amplifier circuitry so that the
transformers do not handle signals direct from the replay heads.

We can say that a rotary head recorder is no more than a mechanical multiplexer which lays
down tracks rapidly with few heads whereas a stationary head recorder lays the tracks
down slowly with many heads. We could well use the analogy of serial and parallel
transmission. Both approaches require active track following at high density. The
stationary head transport does this by moving the head whereas the rotary head machine
moves the tape. Thus the common criticism that rotary head machines are complex is not so
strong at high densities where a stationary head transport needs a track following servo, or
with interleaved heads, several servos.

Capstan phase control in rotary head recorders cannot accommodate track straightness
errors due to, for example, interchange inaccuracies. In this case, the rotating heads may
have an additional track following mechanism which allows the heads to be deflected along
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thescanneraxis (i.e transverselywith respectto the tapetrack)asthescannerrotates.In
thiscasegeometricerrorswithin thetrackcanbecompensated.In a rotary headrecorder
thehead/tapeinterfaceiscomplex.Therevolvingscannerbuildsupanair film andthefilm
thicknessstabilizeswhenthetapetensionbalancestheair pressure.This isonereasonwhy
tapetensionis critical in rotaryheadrecorders.As aresultof theair film thescanneritself
doesnot touchthetapeandfriction aroundit is very low.Theheadpolemustprojectoutof
thescannerbyadistanceequalto thefilm thicknessplusanamountneededto deform the
tapeto give therequiredcontactpressure.The travelingdeformity in thetaperesultsin
acousticnoisewhich mayneedattenuationin someapplications.The linearspeedof the
headwith respectto thetapemustbekeptbelowthepropagationspeedin thetapeto avoid
thecreationof mechanicalshockwaveswhich resultin rapidwear.At therelativespeeds
involved,thereisappreciableaerodynamiclift attemptingto separate the head and the tape.
The conditions are in a region midway between the finn contact of a slow speed stationary

head tape and the non-contact system of a hard disk. The wear reducing properties of the
lift can be balanced against separation loss. In practice head wear is greater on new tapes

where asperities are linished by the heads. Older tapes show reduced head wear and error
rates.

Head Design

Naturally rotary heads experience high frequencies and the magnetic circuit must be
constructed is such a way that eddy current losses are minimized. Ferrite is non conductive
but saturates before today's high coercivity tapes can be fully modulated. Metal pole tips
can be fitted to ferrite bodies, or lamination or sintering can be used to raise head

resistivity. A single head may reach 200 megabits/second, but in practice lower figures are
used for other reasons such as the need to distribute data over several heads to give

resistance to clogging or to reduce the frequency at which the associated circuitry must
operate. Whilst the reading speed has no effect on most types of noise, raising the speed
does increase the replay signal in proportion and so the effect of head and preamplifier
noise is reduced.

Conversely inductive heads are at a disadvantage at low relative speeds. For a given bit
rate, stationary head, or parallel recording, implies low frequencies where magneto-
resistive heads with their non-derivative action give a noise advantage. There is a

changeover at approximately one megabit per second where the two types are roughly
equal in performance. Thus in general rotary head recorders use inductive heads where
eddy current losses are a concern whereas stationary head recorders will use magneto-
resistive heads where eddy current losses are insignificant unless prodigious bit rates are
envisaged.

Apart from the requirement for the appropriate magnetic orientation for transverse scan,
there is little difference in the magnetics between tape intended for rotary and for stationary
head machines. Therefore any development in tape technology is available to both.

Similarly developments in channel coding and signal processing are also available to both.
Rotary head recorders require smaller DC components in channel codes due to the presence
of the rotary transformers, although in practice both types of machine have been seen with
the same channel code. Similarly techniques such as partial response are equally applicable.

In error correction, stationary head recorders see defects in several tracks simultaneously
and need to interleave by distributing codewords over several heads to restrict their impact.

Rotary head recorders to an extent interleave mechanically as a circular dropout appears as
a spaced out series of defects in successive head scans.
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Onesignificantdifferencebetweenserialandparallel recording is that the rotary head
recorderis naturally complementedby theadoptionof azimuth recording.Rotary head
transportshaveasmallnumberof headsandthesearespacedapartphysically.It is easyto
makesuchheads(minimum two) with alternatingazimuthangles.If a suitablechannel
codeis employedto restricttheratioof maximumandminimumwavelengths,erasureby
overwritecanbeemployed.Notonlydoesthiseliminatetheerasehead,it allows thetrack
width tobedeterminedbythetapespeedandnot theheaddesign.If thepolesof therecord
headaremadewider thanthetrackpitch,partof thesideof a giventrack will beerasedby
thenexttrackto bewritten.Azimutheffectallowsreplayheadstoreadtheseadjacenttracks
despitethe lackof aguardband.As aresultazimuthrecordinghascometobesynonymous
with thetermguard-band-lessrecording.

Tapesof different coercivitycanbehandledby choosinganappropriatetrack width and
driving thetapeat a suitablelinear speed.This approachis usedin RDAT which can
operatewith 13micrometertrackson metal particle tapebut which uses20 micrometer
tracksonbariumferritetapewhich isrequiredfor contactduplication.

In principlecertainaspectsof azimuthrecordingcanbe usedwith stationaryheads,and
suchdevicesareknownif uncommon.In oneimplementation,two interleavedheadstacks
areused,oneof eachazimuthtype.The first headwrites trackswhichareoversized,and
thesecondwritestracksof thecorrectwidth betweentheothers,sidetrimmingthemto size
by overwrite. In practiceit is difficult to fabricatemultitrackheadswith azimuthangles
other than90 degrees.This appliesto conventionalheadsaswell as thosewhich are
fabricatedusingphotolithography.

Variable Speed

The different transport designs react differently to the requirement to operate at variable
speed. It is necessary to be quite precise about the kind of variable speed operation being
considered. In instrumentation, variable speed operation implies that the timebase of the
recording and reproduce processes is different, but all of the data are fully recovered. This
allows, for example, the high data rate of a practical experiment to be recorded as it occurs,
but reproduced at a rate appropriate for the analysis process, which may well have a
restriction such as the I/O speed of a computer. A linescan recording from a high speed
airplane may be studied at leisure on a display.

On the other hand the requirement in a digital video recorder is only that a recognizable
picture shall be available at non-standard speeds, and so a great deal of data can be lost.

In computation, the transfer rate of a given drive is usually fixed, but a variety of drives
may be available, at different costs, which can offer different transfer rates on a common
interchange medium.

In a stationary head recorder, the data rate from the heads is directly proportional to the tape
speed. If a variable bit rate is required, then changing the tape speed will require a
corresponding change in any record or reproduce equalization in every active track. In
machines with a large number of tracks this becomes very complex. At high speeds the
frequencies seen by the heads become very large. This precludes the use of stationary
heads for production (as opposed to consumer) video recording. Although normal speed
operation is perfectly feasible, high shuttle speeds (100x - 200x) cannot produce pictures.
Rotary head recorders are not capable of operating over a wide range of transfer rates
where no data are lost. This is because the transport aerodynamics must be optimized for
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onespeed.Changingthetransferraterequiresthescannerandcapstanto changespeedby
the sameamountand this results in a significant changeto the pumping effect of the
scanner,with consequentchangesto theair film thicknessandtip penetration.
Thehelicalscanrecorderis advantageousfor digitalvideorecordingbecausethetracksare
nearlyparallel to thetapeedge.Whenthetapeis drivenlinearly at thewrong speed,the
scannerspeedisnotchangedin proportionandsothetrackingbreaksdown.Despitethatit
is possible to recover around40% of dataas headscrosstracks at a grazing angle.
Providedthetrackcrossingangleis sufficiently shallow,syncblockson the trackcanbe
recoveredandif theyareuniquelyaddressedthedatacanbeusedto updatea framestore.
A further advantageof helical scanis that the headto tapespeedis dominatedby the
scannerspeed.As a result it is possibleto maintaina reasonablyconstantheadto tape
speedovera wide lineb.rtapespeedrangesimply by modulatingthe scannerspeed.The
result is thatthereplayelectronicswill seeconstantfrequenciesandtheir dataseparators
will operatenormally.

Theshorttracksof thetransversescanrecorderarealmostatrightanglesto thetapemotion
andasa result the lengthof track recoveredat shuttlespeedis too small to allow sync
blocks to be recovered.Thus the transversescanmachineis at a disadvantagefor the
productionvideorecordermarketwherepicturesinshuttlearemandatory.

Video recordersfitted with deflectingheadsarecapableof following entiretracksover a
rangeof speedstypically from-1 to +3. Whena helicalscantransportrecords,thetapeis
wrappedaroundthescannerat thehelix angle,which is determinedby theconstructionof
thescanner.However,thetapeis movingasthescannerrotates,andtheresultis that the
track anglediffers from the helix angle.Thusvariations in tapelinear speedaffect the
effectivetrack angle,andtheheadmustbedeflectedby a rampwaveformto follow. The
steepnessof therampis proportionalto thedeviationfrom normalspeed.It is possibleto
usetheheaddeflectionmechanismof a rotaryheadrecorderto increasetheproportionof
datarecoveredduringshuttle.

In instrumentationrecording,incrementaloperationisbecomingpopular.In anincremental
recorder,thetransportanddatachannelareoptimizedfor a singledatarate,andall lower
ratesareimplementedviaa buffermemorywhichabsorbsinputdatauntil thetransportcan
runat speedandrecordawholeblock.Similarly onreplaydataareoutputat anyratefrom
the memoryand the transport runs in bursts in order to keep the memory toppedup.
Incremental recording hasbeenseenon stationary head,transverseand helical scan
machines,butall arenotequallysuitable.

An bit ratesnearto maximum,thesizeof thememoryis a functionof thedatarateandthe
time takenfor thetransportto changemode.At high density,it is not acceptableto leave
IRGs(inter recordgaps)in betweenincrements.In practice,at theendof an incrementthe
transportwill ceasewriting, stop, reversea short way and wait. On writing the next
incrementthetransportwill accelerateto speed(pre-roll) and read the end of its last
incrementsothat thenewdatacanbeappendedcontiguouslyaftertheold in anassemble
edit.This avoidsthecreationof a gapon thetape.However,the memorymustbeableto
absorbvirtually thefull dataratefor thetimetakento repositionandpre-roil.

At bit rateswell below maximum,the transportspendsonly a small proportionof time
transferringdata.The restof thetime it is idle or repositioning.An idle stationaryhead
recorderdoesnot suffer headwearasthereis no relativemotion.However, rotary head
recordersmust keepthe scannerrunning in order to eliminate the lengthy acceleration
period. There is thus a potential headwearproblem which can only be avoided by
unwrappingthetapefrom thescanner.Thetransportthenentersa standbymode.The time
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takento gobetweenstandbyandfunctionalmodesmustbeaddedtotherepositiontime and
so determines the memory capacity required at low speeds.

In helical scan, unwrapping is a complex process which requires the operation of several
moving guides and which takes an appreciable time. On the other hand a transverse scan

rotary head transport can be unwrapped simply by retracting the single cupped guide which
conforms the tape to the scanner. This can be done in milliseconds with a solenoid. As a

result the transverse scan rotary head transport finds itself at an advantage in the
incremental recording application as smaller buffer memory is needed.

Size

Size means different things in different applications. In some cases it is the size of the tape
reel or cassette which is important, especially if it needs to be shipped. On the other hand it
may be that the overall size of the recorder is restricted, for example in airborne
installations.

Tape cassettes are advantageous in that they protect the tape well from handling damage
and require little skill to insert in the transport. However, cassettes are at a disadvantage for
shipping because they are volumetrically inefficient. A cassette contains two reels, but
when one is full, the other must be empty. As a result, instrumentation users will

sometimes choose to retain open reels when really large quantities of data must be shipped
on tape.

Where overall size matters, the choice of cassette or open reel becomes irrelevant as two

reels are needed by both. The stationary head transport can be made very compactly as the
head block takes up very little space. In contrast the scanner and threading mechanism in a
helical scan transport will take up appreciable space, often making the deck area double that
of the cassette. The transverse scan design is appreciably more compact as the headwheel

has a much smaller diameter and the axis of rotation is parallel to the tape. The threading
mechanism is trivial and takes up little space.

Ruggedness

In harsh environments differences will be found between transport designs. The helical

scan transport is most sensitive as the large scanner has appreciable inertia and can generate
large precessive forces and timing errors in a mobile or airborne environment. It is also the
most critical on tape tension as variations cause changes in air film thickness and also result

in changes in track angle which may cause interchange problems. Humidity changes can
also affect the track angle in helical scan whereas transverse and stationary head recordings
are unaffected.

Abstractions

When a helical scan recording is played at the wrong speed, parts of the track are

recovered, allowing typically 40% of the data to be recovered. If, however, the tape speed
is normal, but the scanner is driven at around twice the correct speed, then full data

recovery is possible. Sync blocks will be recovered non-sequentially, and block addressing
will be used to return the data to its correct sequence in memory. Error correction restores
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anysyncblocksthatarenotrecovered.This is theprincipleof thenon-tracking(NT) rotary
headrecorderwhichclearlyneedsnoadjustmentfor interchange.

In principle, anNT transportcouldplay tapeshavinga varietyof footprintsprovidedthe
headswereof theappropriateazimuthangleandapproximatelytherightwidth.

Non-Trackingis anattractivetechnologyas insteadof requiring increasingprecisionto
allow narrower tracks,NT dispenseswith the needfor tracking altogetherand, indeed
dependsuponseveremistrackingto allow thesyncblocksto be recoveredin a statistical
manneroverseveralheadsweeps.ThusanNT playercanplay tapeshavinga variety of
trackangles.If azimuth recordingis used,tracksof variouswidth canalso be played.
Following thisargumentfurther,it shouldbepossibleto playastationaryheadmulti-track
recording using a NT helical scan transport. Provided the azimuth of the heads is
appropriate,syncblockscanbe recoveredasthe headscrossthe tapetracks.Deflecting
headscouldbeemployedto increasetheproportionof datarecoveredoneachheadsweep.

The converseargument is that, subject to details suchasazimuth, a stationary head
transportfitted with trackfollowing headsshouldin principlebeableto play a helicalscan
tapeby deflectingtheheadsatanappropriatespeedto replicatethehelicaltrack angle. If
severalsuchheadsarefitted,onecanberesettingwhilst anothercrossesthe tape.This is a
messyarrangementandisadvancedonly asanintroductionto abetterapproach.

Magneto-optical readouthasprimarily beenaddressedto disk recording where the
magneto-opticelementis in thediskitself.It is, howeverpossibleto usemagneto-opticsto
readconventionalmagnetictape.This requiresthat the magneto-opticelementis in the
head.Briefly, a headis madehaving two polesand a narrow gap,but which is wide
enoughto spantheentirewidth Ofthetape.A giventrackonthetapewill causetheareaof
oneof the polesabovesaidtrack to follow the track magnetization.If polarizedlight is
incidenton theheadpole,thereflectedlight will havethatpolarizationrotated.A suitable
analyzercan turn the rotation into an intensity variation which a sensorcan detect.
However, thesensoris a linear sensorwhich developsa onedimensionalimageof the
cross-trackmagnetism.Any numberor layoutof trackscanbehandledsimplyby sampling
thecrosstrackimageattheappropriatepoints.If thesensoris, for example,a linear CCD
element, the crosstrack imagecan be shifted out and analyzed in a software driven
process.Thustrackweaveof astationaryheadrecordingcanbeeliminatedby shifting the
samplingpointsin sympathy.

If, however,ahelicalscanrecordingisplayed,theslanttracksappearto continuouslydrift
acrosstheimage.As oneis lostat oneedgeof thehead,anotherbeginsat theotheredge.
Again,subjecttoazimuth,it is possibleto playa helicalscanrecordingonastationaryhead
magneto-optictransport.Althoughtheheadis physicalstationary,it hasvirtual movement
by wayof following theimagesof continuousslanttracksin theanalysisprocess.

Thusin thelimit, rotaryheadrecorderscanbemadeto play stationaryheadtapesandvice
versa,suggestingthatthetechniquesarenot all that different.The rotary and stationary
approaches are both complex as density rises, but the non-tracking principle may give the
edge to the rotary transport in the future, with competition from magneto-optic replay in
stationary head design.

To illustrate that nothing is new, in W.W.II a German fixed head audio tape recorder
intended for dictation was fitted with a rotary playback head so that it could reproduce

speech without pitch change over a wide range of linear tape speeds.

1. Watkinson, J.R. The Art of Data Recording, Chapters 7 and 8. Oxford: Focal Press (1994) ISBN 0 240
51309 6.
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This paper will attempt to examine the industry requirements for shared network data

storage and sustained high speed (10 's to 100 's to thousands of megabytes per second)

network data serving via the NFS and FTP protocol suite. It will discuss the current

structural and architectural impediments to achieving these sorts of data rates cost

effectively today on many general purpose servers and will describe an architecture and

resulting product family that addresses these problems.

The sustained performance levels that were achieved in the lab will be shown as well as a

discussion of early customer experiences utilizing both the HIPPI-IP and A TM OC3-IP

network interfaces.

Introduction:

Back in the dark ages, about the time that touch-tone telephones were coming into vogue,

computers were simple things that read in some data and a program, processed the data

and spit out the answer. Data storage

typically consisted of small amounts of core

memory, card reader/punch machines and

maybe a tape drive. Disk storage added the

dimension of random access to data, but

was typically directly attached to the central

processor by any number of proprietary I/O
schemes I .

Data sharing

Early customers in the high performance

arena often owned several processors: one

or two very large number-crunches and

several smaller machines used to prepare
the data for the large machine and/or print Figure 1: Traditional Supereomputer Center

the output stream generated by the number crunchers 2. A typical installation might have

looked like that shown in Figure 1.

Sharing of data across computing platforms was typically done by copying data located on

one processor to tape and reading it on another. Just attaching disk storage to multiple
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processors did not address the problem since most processors utilized different physical

and logical attachments. Even if two machines, by chance, could physically share a disk

storage device, different machines wrote and read data in different ways and could not
access each others data.

Some early solutions involved the use of black boxes that attempted to mate different

interfaces and address data format incompatibilities. The large number of interfaces and

file structures in use today (and growing!) tended to work against this type of an

interconnect solution 3. In an early, and very innovative, attempt to address the problem of

incompatible file systems, the Los Alamos Lab's created the Common File System (CFS) 4

on an IBM mainframe base. Architecturally, CFS could be considered to be the first

implementation of networked data serving. It addressed the issues of data sharing amongst

heterogeneous hardware platforms, incompatible file systems (e.g. its name...Common File

System) and the problem of incompatible physical I/O attachment schemes - although this

was often accomplished via "black box" I/O mating hardware.

The ever growing complexity of the "black box" solution for heterogeneous platform

interconnect ruled this method out as a long term answer to seamless data sharing.

Alternatively, all vendors could adopt a common file system and I/O structure. This was

thought unlikely.

Client/Server to the rescue?

A little over ten years ago, a group of UNIX architects at Sun Microsystems realized that

the only way to address the data sharing problem (as well as data currency, consistency

and access) was to remove the "ownership" of the data from the compute processor (the

entity who processes the data) in a manner similar to that utilized by CFS and store it on

an independent "server" who's only job is to store and retrieve that data when requested

to do so by the compute processor (e.g. the "client"). Most imPortantly , they also defined

a standard way to access the data that would be independent of any particular physical file

system and physical interconnect. Thus was born the Network File System (NFS); the
original foundation of client/server computing.

Speed limit: 5 MPH.

DEC talking to IBM, SGI communing with HP, The USSR making peace with the USA!

All these things became true; unfortunately the Cold War lasted 50 years and that seems to

be how long (in a relative sense) any self respecting high performance computer seems to

have to wait for data from its "server" today. The convince of sharing data across many

platforms comes at a price - speed. NFS (and essentially any exportable file system

available today) is primarily hamstrung by three major bottlenecks:

1. The speed that the server's disk subsystem can deliver data to the NFS server, and

2. The speed that the NFS server can process this data through its own file system and

encapsulate (packetize) this data with the UDP and IP network protocols and deliver it

to the network fabric, and

3. The finite usable speed of the fabric 5.
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Where you want

yoyr data...

ProtocolStack " =c ""
Focus should _ _ ;_
be hereT .\ !_

r _

Disk I/0 Subsystem

Focus is too often here
Your Data is here...

Figure 2: Disk I/O protocol stack

Slow... Fest

Block I/0 (raw) I/0 Sector I/0
(~1.5 MB/Sec.) (~4 MB/Sec.) (~5 MB/Sec.)

I/0 Buffers Memory ---Device
stem Manager DriverFile S

Figure 3: Effective data rate through a UNIX platform

Ethernet, at 10 Mbit/second focused

everybody on item three because of its

low usable bandwidth and, after some

frustration, begat FDDI (and later HIPPI,

Fibre Channel and ATM) which was

supposed to be 10 times faster. To

everybody's amazement, they did not get

10X the data rate, they got 2-3X the data

on a good day and often less. Adding

more FDDI rings, routers, bridges and

other network paraphernalia did not seem

to help. Just speeding up the fabric did

not seem to be the answer. Items one and

two were now the gate, but seemed to

have received less attention by industry

over the past several years than may have
been deserved 6.

The real culprits exposed!

For an NFS server to deliver data to a

client it first has to read the data off the

disk subsystem in the server. In a typical

UNIX environment the software protocol

stack would look something like that

shown in Figure two. If you measure

actual disk data rates starting at the disk

interface and working your way towards an application (e.g. NFS server or a user

application) the effective delivered rate decreases with each step up the protocol stack.

Figure three illustrates this point graphically 7. Fast disk I/O becomes slow disk data by the

time it reaches the requesting application. A typical SCSI disk of recent vintage can

deliver about 5 megabytes a second of user data off the media. By the time the data has

traversed the protocol stack labyrinth, the sustained delivery rate has often decreased to

about 1.5 megabytes a second. Most storage subsystems _ are not capable of delivering

high sustained bandwidth to the requesting application; be it the NFS server or a users

application.

Incrementalism: Disk striping, data caches and other software improvements.

Various incremental methods have been proposed and/or implemented in a limited sense to

attempt to address this problem. The most common of these is disk striping wherein the

disk device drivers and (usually) the layer of code that performs the function of the logical

volume manager are modified to break up a users data record into smaller chunks and

write (stripe) these chunks onto multiple disks simultaneously. Various RAID types may

A "storage subsystem", as used here, represents the complete collection of components necessary to
deliver data to the requesting application: Disk drives, I/O cards, software layers, file systems, etc.
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also be imbedded in the software to increase data availability. Some high data rates have

been achieved under laboratory conditions by using this method but they typically required

extremely large data request sizes on the order of multiple lO0's of megabytes or more

Typical high-

performance _[
workstation -,

eli

with striping =i

SCSI device .=-,
drivers. , °'

L
__ _40%

®

,//////////////////////////////////J.

APPLICATION

aiL[_ -80%

ail

High Performance Storage Server

Figure 4: Software vs. Hardware striping

modification to most file systems and virtual

that are primarily sequential single

stream/single user in nature. 8 By definition, a

shared network server must deliver multiple

streams of data to multiple users. Each

network request, when using the NFS

protocol, is limited to 8 kilobyte datagrams

under NFS-2 and 60 kilobyte datagrams

under NFS-3. Software disk striping, at least

as currently implemented, does not seem to
be the answer.

Massive data caching can address some of

these concerns by preemptively reading

ahead (i.e. turning small user requests into

large I/O requests) multiple megabytes of

data in order to achieve high bandwidth from

the disk subsystem. Depending on the

locality of reference, sequential (or non

sequential) nature of the clients data access

patterns, caching may or may not help. In all

cases, allocating large amounts of main

memory for preemptive disk caching is not

cheap nor always possible without additional

memory managers.

Striping, and optionally software RAID artifacts, tend to add significant overhead to basic

I/O operations. A 4+P RAID 5 stripe implemented on a set of generic SCSI drives and

adapters requires 5 invocations of the basic disk UO protocol stack (SCSI disk driver, card

driver and unique device head codes) all contending for system I/O bus bandwidth and

main memory access. Data transfer is not really parallel due to the Von Nuemann nature

of most machines; rather it is (hopefully) rapidly interleaved in such a way as to appear

parallel in nature to the requester. Sitting on top of these multiple device drivers would be

a "collection manager" who's role in life is to re-assemble the users data records out of the

disk chunks read by the device drivers (or on a write operation perform the "chunking" of
the data records), verify correct parity and pass the re-assembled records to the user

and/or to the file system buffer space.

We have noticed that it required approximately 5% of a large UNIX servers compute
cycles to sustain a 4-5 megabyte per second data stream at the raw interface 9. With the

addition of"collection manager" overhead and optionally a software RAID function, the

I/O overhead actually experienced by the user would be higher. To hypothetically sustain a

50 megabyte per second striped SCSI stream at the raw interface may consume up to 50-

60% of a typical servers available cycles; thus not leaving much for any useful work such
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Client/Server. ....

The performance

conundrum
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Figure 5: Disk and network protocol stacks

as actually delivering data to a client

application. A better way to deliver data

to the NFS server needs to be found.

The search for a better way

drivers were not designed to efficiently deliver high, sustained data rates and,

that capacity, deliver sub-optimal bit rates to your network clients.

Based on what has been discussed

previously, we recognized that using a

general purpose UNIX (or other OS)

compute platform as a "data bus" is

inefficient, costly and may never deliver

the performance required to satisfy the

data absorption rate demanded by large

HPC clients no matter what modifications

we made to the software. Through-

memory data transfer, system bus

contention and general purpose I/O
when used in

Unfortunately, the worst is still to come. Assuming that the NFS server code finally gets

the data it needs from the physical file system, the disk data blocks have to be sized to the

users actual NFS request, packetized into datagrams and shipped over some fabric via IP

protocol. Please see Figure 5 for a diagram of this protocol stack. As should be no

surprise to the reader, another complete software protocol stack comes into play here

further impacting the ability of a server to deliver meaningful data rates. Imagine all those

little IP packets interrupting the I/O bus all the time, the OS frantically moving bits of data

here and there through memory and the IP, UDP and LAN drivers all contending for

precious CPU cycles. Performance problems are inevitable.

To eliminate these data bottlenecks you have to re-architect and completely re-define what

a "server" is from the ground up. From our prior discussion, I think we can safely agree

that it is not a workstation with lots of disk and some LAN cards. What it must be is a

machine designed to manage and move large amounts of data efficiently and rapidly from

disk storage to a fabric. Essentially, it should connect the disk subsystem directly to the

network. It should scale (i.e. grow in usable bandwidth) as the clients and, as a second

order, the request rate grows with no loss in performance. Since we are suggesting that

many users entrust their crown jewels (i.e. data) to this machine, it should offer complete

redundancy, virtually 7X24 access to the "jewels" and a bullet proof file system and

backup scheme. A failure affects 10's to 100's of users, not just one or two. Since we are

addressing high speed transfer of very large files on the order of multiple megabytes to

gigabytes, file system corruption and/or physical disk storage failure could be catastrophic.

Client/Server network performance requirements definition

In order to solve the performance conundrum described above and design a file server

capable of truly utilizing high bandwidth fabrics (e.g. ATM, FCS) you have to start with a
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set of design points far above what
has, to date, been deemed as

acceptable Some of these points that

we picked for our initial design were as
follows:

.

,

,

.

Sustained data delivery rates in

excess of 50 Megabytes a second

in order to utilize the bandwidth

offered by FCS and/or multiple
OC3 ATM links As faster fabrics

become available the server must

be designed to accommodate them

without extensive redesign of the
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A scaleable design where the Figure 6: Data Demand by HPC Platforms and Applications

servers network bandwidth grows

with the addition of more network ports vs. most current architectures where

additional network ports deliver additional connectivity and fault tolerance but not
necessarily more bandwidth ]°

Sufficient storage c__acity to address the large data objects that graphical and "grand

challenge" type applications tend to generate coupled to enough internal bandwidth to

allow the server to access its storage subsystem fast enough to serve, for instance,
multiple 155 megabit ATM OC3 links at rated speed.

100% fault tolerance and 7x24 data availability for the reasons previously described.

Does anybody really need this?

Firstly, as sort of a reality check oll the above specifications, we decided to more

accurately understand if there is really strong market demand for extremely fast NFS/FTP

servers. Earlier in this article, we discussed what was plaguing current server designs, but

we did not discuss whether the user demand was 2X, 5X, 10X or whatever. Mark Seagert

and Dale Nielsen at the Lawrence Livermore Computing Lab developed a model to

illustrate the "data demand" of various compute platforms and/or applications. A version

of that model, expressed as a Nomograph is shown in Figure 6 __

The upper line, representing some common high performance computers aggregate data

demand is compared to the lower line representing time (e.g., how long will a user wait

for the data). Transmission speed (the middle line) can then be extrapolated from the size

of the data object and the users "patience". We quickly realized that today's HPC demand

is in the 100's of megabytes a second and growing fast.

We also interviewed most of our major customers and were able to identify four basic

client/server application sets that had broad applicability in both the HPC community and

the general commercial marketplace and required high sustained data delivery rates to
perform well.
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1. Animation: The studio standard for uncompressed, high resolution video is the D1 bit

stream at 270 Megabits a second• Failure to deliver and sustain this isochronous bit

stream will not allow for full motion playback of the digitized clip. All major studios,

post-production and special effect houses are investing heavily in animation studios.

2. Simulation codes ability to accurately predict behavior improve as the number of

points measured and the depth and width of the data stack associated with each point

increases. From data preparation on workstations through large scale computing and

eventual output display on frame buffers, massive amounts of data must flow through

the network quickly and efficiently.

3. Data Mining: The "killer app" of the Ninety's says it all: Sifting through vast quantities

of data to extract information useful to the client. Speed of data access (e.g. time to

market) is everything.
4. Non-coded data storage and deliveryzjhe collection of applications that concern

themselves with the processing of non-coded (eg Video on demand, multi media, raw

seismic data, high speed telemetry, image and pattern recognition etc.) data either deal

with extremely large objects or deal with demanding isochronous data flow or, in

many cases, both.

Based on the above and other

market research we conclude

that a large (and growing)

segment of the client/server
market could use a very high

performance data server.

The MPP issue

The movement of massively

parallel MIMD machines into the
commercial sector coupled with

the expected growth of full

motion video data

representations virtually

guarantees that today's

generation of servers will not be
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Figure 7: Data serving in a MPP environment

able to satisfy the data demand
that these new applications and parallel processors will require to operate efficiently.

Commercial applications tend to exacerbate the classic problems of delivering a large

MIMD machine enough data to the correct node on a timely basis so as to actually utilize

the massive compute power that itcan bring to bear. Figure seven illustrates a conceptual

idea of how very high bandwidth data serving might address this well known problem.

We are currently working with certain MPP vendors to further refine and validate the

concept of massively parallel external data distribution.

Rising to the "grand" challenge

1_1



Figure 8: High Speed Server data flow ...

We realized that several challenges would have to be overcome to realize true high

performance NFS and FTP bandwidth. Starting at the network access side, we recognized

that we would have to provide multiple independent network ports which could be mixed

or matched in any combination due to the heterogeneous nature of most users hardware

install base. (Please see Figure 8.) HIPPI-IP, ATM-IP and Fibre Channel-IP were chosen

- _ to be the first three network

Data4-- - i interfaces supported for the
following reasons:

1. HIPP!, while somewhat costly
and not as flexible as ATM and

Fibre Channel, is here today,

supports 800 megabit transfer

speeds and is supported on most

all high performance
and workstations, MPP's and

Flow traditional super computers.

2. ATM is rapidly developing into

the high speed LAN/WAN of

choice and, again enjoys near
universal acceptance. While OC3 speeds of 155 megabits/second are lower that the full

rated speed of our design, most clients cannot currently absorb IP data rates even that

high. We recognized that as OC12 capable clients emerge, we would be well
positioned to support that data rate.

3. The Fibre Channel Standard (FCS) supports gigabit transfer rates, is mature in its

specifications and has been adopted publicly by IBM, HP and SUN. Other workstation

vendors have told us that they plan to support this standard, at both quarter and full
speed implementations, during 1995.

We considered FDDI and 10 megabit Ethernet but decided not to directly support these

interfaces primarily because they lacked the bandwidth to support the marketplace we

were interested in addressing and interconnection to these legacy networks could be
handled by numerous vendors of routers and switches _2.

Outboard protocol processing

In order to achieve the scaleability criterion described earlier, we equipped each network

port with its own integrated protocol engine to handle the IP, TCP or UDP protocol

stacks completely within the attachment port. In addition, and modeled after some of the

seminal work performed by the National Storage Lab (NSL) and others _3, we recognized

the need to separate the command and control paths from the actual user data transfer

paths so as to maximize the speed and efficiency of our internal data bus while providing
for completely asynchronous and concurrent command flows.

Specifically, in the design we implemented, the outboard protocol stack engines strip the

NFS and/or FTP payloads (RPCs) out of the network IP packets and route them off for

processing by an independent dedicated filesystem processor. It is at least metaphorically
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correct to view the server's filesystem as a hardware file system rather than a shared

software construct. A design of this nature allows the protocol engines to scale up as

network connections are added to keep protocol handling from bogging down the server

as users add connectivity and/or clients. This implementation addresses one of problems

with today's fully software based servers; they do not scale well with connectivity and/or

client load.

Filesystem processing and storage management

The file system processor, currently a Motorola 68060, accesses metadata (file identifier

and i-node data) from a internal 32 MB local cache backed up by dedicated mirrored

(RAID 1) metadata disks attached to both the file system processor and the storage

manager processor on a local SCSI bus that is independent of the SCSI busses used to

transfer user data. The local metadata cache is large enough to hold the metadata required

to open and access approximately 50,000 user files under normal circumstances. Internal

caching of filesystem metadata drastically reduces the time required to locate and access

the appropriate user data disk in order to fulfill a NFS transfer request.

Connected to the File System Processor over a short inter-processor VME bus is a

second, identical processor, the Storage Manager Processor, dedicated to managing the
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physicalorganizationof theuserdataandin settingup thetransfersof the requesteduser
datafrom thenetwork portseitherto diskor to thesmallwrite behind(fastwrite) caches
locatedin the DeviceModule Controllers(DMC's). The DMC's are responsiblefor the
attachmentof thephysicaldisksubsystemandcanbeconsideredto be "hardware"device
drivers- pleaseseeFigure9 Thissecondprocessor,operatingconcurrentlywith the File
SystemProcessormanagesthe internalRAID 5 organizationof the disk backstore,is
responsiblefor managementof the DMC write behindcachesandcontrols any required
recovery/rebuildprocessesshould therebe a failure of one of the DMC's and/or it's
attacheddisksTM. The Storage Manager Processor sets up, but does not manage, all data

transfers from the DMC caches or disks to the appropriate network ports and vice versa.

Over the command bus, the Storage Manager Processor instructs the DMC(s) to read or

write the required number of blocks of data on/off each DMC's directly attached disk

drives and transfer those disk blocks directly up to the network ports over the servers
internal high speed data busses.

This function segregation between the File System Processor, The Storage Manager

Processor and the multiple Protocol Processors has allowed us to not only scale the server

as client connectivity and data demand grows but tO tune each hardware process to

efficiently implement just the functions that it was designed for and no others 15. We refer

to this design methodology as "MacroRISC _t_,, design: "Only those functions most

needed shall be implemented on a processor and that processor shall be a RISC processor
that efficiently implements those functions."

Internal data transfer bandwidth

The current design implements two (2) 200 megabyte/second redundant data transfer

busses attached to the network ports and the DMC's via custom designed low latency chip

sets. The replacement of through memory data transfer by internal "third party" transfers

over 400 megabyte/second worth of hardware bandwidth eliminates another of the
performance bottlenecks experienced by software only server architectures.

Each DMC is equipped with a Motorola 68020 processor that allows it to maintain its

own queue of work and operate asychronously and concurrently with all other processes

within the server. Under ideal conditions up to 24 simultaneous SCSI lower interface data

transfer operations can be going on delivering an aggregate internal data transfer

bandwidth of over 160 megabytes a second TM. This 24-wide striped I/O subsystem allows

for 100's ofgigabytes of storage to be attached efficiently (e.g. no more than four LUNS

on a SCSI bus) and could allow for the attachment of integrated tape backup systems, if

desired, sometime in the future. Conceptually, what this distributed design does is to

connect one or more disk drives directly to the network with no intervening software
protocol stacks or memory bandwidth limitations.

Data availability

The File System Processor and the Storage Manager Processor are identical in hardware

design and are designed to back each other up. They constantly monitor each others health

and maintain mirrored metadata caches and system status latches. Should one of the two
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processorsfail, the other is capable of
performingboth thefilesystemfunctionand
the storage managerfunction albeit at a
significantlyreducedlevel of performance.
This takeovercapabilityleadsto increased
levels of data availabilityas seenby the
usingclients.

A full UNIX-like system administration
shell, implemented on its own
administrationprocessor, is provided for
operationalconsistencywith existingUNIX
servers.A GUI interfacefor this shell is
planned for mid '95 availability. Hot
pluggabledisks, imbeddedRAID 0,1,3,5
hardware and N+I power with an
integrated uninterruptible power supply
(UPS)completethedataavailabilityaspects
of thepackage.

Client

32 Bit HIPPI W/

8x8 Switch

Server

tl

Figure I0: Early lab test bed

OC3 ATM W/Switch

Measured performance and early customer experience:

When we set out to initially test the performance of beta level machines in our lab we

rapidly realized that the existing "industry standard" NFS test suites based on LADDIS

type workloads or the older NFS ".stones" type of tests were not appropriate for this type
of server. LADDIS and "stones" type tests are oriented towards measuring short, fast

OLTP type workloads and not towards measuring sustained throughput of large files.

Additionally, since we have optimized the server towards NFS-3 large datagram

performance (although it also fully supports NFS-2 workloads) measuring short (e.g. 8K

or less) requests would not allow us to test the sustained large datagram transfer rate. FTP

performance was easier since measuring "throughput" is a simple matter of measuring how
fast files of various sizes actually are transferred to various clients.

What to measure?

What we decided to use as a metric to represent data throughput was to measure the

servers ability to deliver "N" Datagrams per Second, wherein datagrams can range in size

from 8K (NFS-2 limit) to 60K (NFS-3). Sustained Throu_;bput is the product of N and the

datagram size.

During November and December of 1994 we were able to begin testing with beta level

hardware and code. Recognizing that we did not have any client machines fast enough to

drive the server to its limits we slightly modified one of our early servers to enable it to act

as a fast client machine (See Figure 10). All initial measurements were taken utilizing 32
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bit HIPPI channels.A later setwastakenusingOC3ATM.2Thegraph(Figure 11)shows
the relationshipbetweenthroughput,datagramsizeand datagramdelivery rate over a
singleHIPPI-IP port configuredper the test bed shownin Figure 10 above. Several
interestingitemsimmediatelycometo light:

1. The serveressentiallyhas the capabilityto sustaina constantdatagramdeliveryrate
regardlessof the sizeof the datagrampacket.Valuesrangingbetween800-1000data
deliverydatagrams/secondhavebeenobservedacrossall datagramsizestested.

2. Becauseof observationone,deliveredthroughputis primarily a functionof datagram
size.

It shouldbenotedthat thesetestswereperformedusingamodifiedserverasa "client" so
as to remove, as much as possible,the "clients" effects on data rate. The strong
relationshipbetweendatagramsize and throughputmay not be as linear with more
traditionalclientsdueto their potentialinabilityto absorbhighdeliveryratesof largeNFS-
3 styledatagrams.

Thespecificinitializationandopeningstate
parametersfor this testwereasfollows;

1. Thefile to beaccessedhadbeenopened
andat leastone requesthadbeenmade
so as to prime the read-aheaddata
caches and force the caching of
necessaryfile andfilesystemmetadata.

2. Subsequent accesses were of a
sequentialnature.

3. The files accessed were 10's of

megabytes in size or larger. Most of the

small variances noticed are probably

explained by file (request) size.

32 Bit HIPPI (NFS & FTP Performance)
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Figure 1I:HIPPI-IP NFS/FTP Throughput

FTP

We felt that these initial state parameters were appropriate since the target use of this

server is for applications where large files are to be accessed and the amount of data that

the client requests is substantial. This test was designed to measure sustained data

throughput to a client both requiring and capable of absorbing high speed IP traffic.

Priming the data and metadata caches eliminates the initial latency of the "get attributes"

sequences and most mechanical disk effects. Where file and request sizes are large, start-

up latencies are essentially amortized over many megabytes of data transfer and become

trivial. For small requests this is not the case and different start up states should be

assumed for any kind of performance testing. We plan to perform more extensive

performance testing over a wider range of workloads during the first half of 1995.

2 All results shown here should be considered preliminary due to the early levels of hardware and

code used to perform these tests. Final data will be formally published in an update to this paper in
the second quarter of 1995.
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ATM performance data is in the process of

being developed more fully. Early lab

results, obtained during December of 1994,

have demonstrated the ability to sustain

approximately a 12.5 megabyte/second

(-100 Mbits) data stream over an OC3

(155 Mbits) ATM channel coupled to a

FORE Systems FORE-Runner t_ ATM

switch. (See Figure 10) All switching and

virtual circuit initializations were controlled

by FORE Systems SPANS 16 interface code
which we have implemented in the ATM

versions of the proFILE server. The

datagram size used to obtain these results

was 56K and the initial state parameters

As of this date, December 1994, the maximum number of ATM channels that we have run

simultaneously at this rate is two. No measurable degradation in performance was noticed.

Both ATM channels sustained about 100 megabits/second of user data transfer. We

expect that when all ATM performance tuning is completed sometime in the second

quarter of 1995 that we will be able to saturate four OC3 ATM channels with large NFS-3

datagrams.

Early ATM Customer result:

In December of 1994 two proFILE HIPPI and ATM files servers were installed at a

customer who's major application is various sorts of studio animation and video post

processing 3. The goals of this early beta site were fourfold:

1. Verify ATM-1P NFS operations when interconnected with FORE Systems products

and Silicon Graphics POWER CLALLENGE XL (tin) and Indigo (t_) clients via the

SPANS interface.

2. Verify HIPPI-IP (and HIPPI IPI-3) interconnect with Cray Research's EL and J-90

series of processors.
3. Measure what sustained performance could be achieved at various datagram sizes and

application request patterns.

4. Insure proper operation to all clients in an NFS-2 and NFS-3 environment.

ATM & SPANS: Installing and setting up the ATM network went very smoothly. The

ATM part of the network, with the exception of the ATM boards in the proFILE server

which were designed by ourselves, was all supplied by FORE systems and operated well.

A simple point to point star configuration was used for simplicity and guaranteed

3 The results presented here are very preliminary and do not represent a production level environment;

rather they represent interim results of an ongoing experiment.
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bandwidthto eachclient.Weandthecustomerspecificallyavoidedcomplexmixedvendor
fabricsdueto theimmaturestateof manyATM productsand,moreimportantly,industry
acceptedspecifications.

NFS-3: NFS-3, as implementedon pre-releaseversions of Silicon Graphics IRIX
operating systemReleases5.3x and 6.1x4 had someearly-on stability problemsand
command/responsestateerrors.Thiswasnot particularlysurprisinggiventhatwe wereall
workingwith non-releasedcodeandacompletelynewversionof NFS.Fortunately,many
of the NFS-3 problemswere uncoveredin our labs prior to install which madethe
installationfar lesspainfulthat it mighthavebeen.SiliconGraphicswasvery helpfuland
responsiveworking with us to addressanyNFS-3glitchesin IRIX andour servercode.
Basedon ourprogressto date,weexpectthat by thesecondquarterof 1995,NFS-3will
bereadyfor generalavailabilityandproductionuse.

HIPPI-IP and Cray "big block" NFS: Cray Research, recognizing the performance

limitations of NFS-2 years ago, implemented a proprietary Cray-to-Cray extension to

NFS-2 that allowed the use of large datagrams up to 60K. This has proved to be very
effective in speeding up interprocessor IP communication between Cray platforms. Peter

Haas, at the University of Stuttgart, has measured sustained Cray NFS traffic up to 7.5

MB/second between a Cray Y-MP/2E

8K 1.8 MB/sec.

16K -3.2 MB/sec.

32K -5.4 MB/sec.

56K _5.4 MB/sec.

60K -5.4 MB/sec.

Table 1 HIPPI NFS Performance

server and a Cray C-94 client _7,

When we initially installed the proFILE

server on the Cray EL, it was

configured as a storage server utilizing
the IPI-3 protocol over HIPPI.

Everything worked well, with data rates

observed in excess of 50-60

MB/second After determining that IPI-3 disk protocol operated correctly with the EL, we

upgraded the proFILE to full file server mode and ran some initial NFS test runs at
various datagram sizes.

The following table (Table 1) shows achieved data rates as a function of datagram size.

We discovered that UNICOS 8.0 (Cray's operating system) would not generate a packet
larger than 32K even though it was configured to do so. This problem was confined to the

EL series and has been identified and corrected by Cray. Because of this, there was no

throughput improvement above 32K datagram sizes. We plan to publish updated
performance numbers when we retest with updated proFILE and UNICOS server code in

early '95. We expect to see substantial improvements at that time.

ATM NFS Performance: As previously mentioned we achieved effective ATM saturation

rates of over I00 megabits/second of user data when running two proFILE platforms as

client and server respectively. (See Figure 10) When configured as per Figure 12

(proFILE to SGI Indigo) we achieved 15-18 Mbits/second sustained NFS transfer rates

4 IRIX releases coded as "5.2x" support 32 bit hardware platforms. Versions coded 6.0x support 64 bit
platforms. Release 5.2 and 6.0 are at the same basic function level. The "x" represents a non released
version of the OS.
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per physicalATM channelusingNFS-3 8K packets.IRIX 5.3x's supportof NFS-3does
not yet supportanydatagramsizeslarger than8K nor theability to configuresignificant
additionalquantitiesof UDP datagrambuffers.We expectthissituationto becorrectedin
1Q95.

Given that the proFILE servercanhold a constantdatagramdelivery rate regardlessof
datagramsizeand that the client seemedto be primarily gatedby the virtual memory
manager,IP protocol stack and the NFS RPC interrupt handlercomponents,we can
extrapolateperformancein therangeof 50-80Mbits/sec.whenIRIX fully supportslarge
(56K) datagramsizesand sufficientUDP buffering is available.(e.g. The OS client
componentsmost involvedin limiting datagramabsorptionrate will be executedfar less
frequently.)Updatedinformationwill beprovidedin arevisionto thispaperlaterin 1995.

Whilebothwe andthe customerarepleasedwith theseearlyresultswe feel that theyare
not indicativeof the throughput that we can achievewith production level operating
systemcode,someapplicationtuningand,mostimportantly,experience.

Summary

The distributed, parallel server design implemented in the proFILE family of network data

servers has promise to revolutionize and make practical the concept of file serving to truly

high performance client machines. By eliminating software protocol stacks, system and

I/O busses, memory accesses and operating system overheads inherent in most "servers"

today, performance levels that used to be available only on a local file system can now be

delivered (and potentially bettered) on a remote, shared file system. On the client and

network side, the full implementation of the NFS-3 protocol suite and the availability of

fast fabrics completes the picture.

For the first time, continual data starvation will become a thing of the past and the promise

of high performance Client/Server computing will become a reality.

199



Endnotes and References:

1 An informal count of physical attachments in use a few years ago was on the order of 35 or more. Some

examples were: IBM BMX & ESCON, DEC Q-BUS, CI & BI BUS, Univac word channel, Boroughs A-

Series disk interface, NCR direct connect, SCSI: (l&2, Fast, Fast/Wide, differential and open ended), IPI:

(2 & 3, Voltage or Current mode and IBM's DFCI used on the AS/400), SMD, and numerous others.

2 Typical installations of this sort may have utilized an IBM 7094 for arithmetic operations and one or

more IBM 1401 processors as I/O support machines. Early CDC 6x00 installations were similar. Cray

Research users often employed large IBM and Sperry mainframes dedicated to data preparation and input

support and, more importantly, as permanent data repositories. The Los Alamos Common File System

(a.k.a. "Datatree" - in it's commercial incarnation) was a well known example of this scenario.

3 Examples of some common I/O channel to I/O channel "black boxes" were the Network Systems

Corporation (NSC) "DX" (Data eXchange) family of interconnect products and, at a higher function level,
the Ultra-1000 network hub offered by Ultra Network Technologies.

4 CFS was brought up in 1979 on an IBM 370/148 processor running the MVS (Multiple Virtual

Storages) operating system. Datatree, released by General Atomics is functionally equivalent to CFS
release 56.

s Most peer to peer LANS and WANS today employ one of two generic schemes to allocate bandwidth to

multiple users at the physical level: 1) CSMA/CD (Carrier Sense Multiple Access/Collision Detect) which
is employed by Ethernet type LANS wherein the client "listens" to the network and, if it seems to be free,

transmits its data. Obviously, collisions (and retries) are common during heavily loaded periods, or 2)

token controlled access, (Token Ring, FDDI, etc.) wherein a user must have access to a "token" to

transmit data. Controlled access fabrics rarely have collision problems, but suffer from the higher

overhead required to manage and share the token. See ANSI standard document 802.xx for further

reading.

6 There was one major exception to this statement. Under the direction of Dr. Richard Watson, the

National Storage Lab (NSL) located at the Lawrence Livermore National Laboratory (LLNL) directed it's
focus towards serving HPC platforms at very high speeds primarily via utilizing a construct called Third

Party Transfer over HIPPI networks. (See reference 13) All data transfer was under control of a modified
version of Unitree (NSL-Unitree) and is commercially available from IBM's Federal Sector Division.

7 SCSI data rates delivered to various points in the protocol stack (driver level, raw, and block interfaces)

were obtained via the use of an IBM tool "perfmon" running on an RS/6000 98B with AIX 3.2.5. There is

no guarantee that any user can or will obtain these results. They are presented for illustrative purposes

only. Please see IBM publications GA23-2704-00 and GA23-2708-00 for similar information concerning
achieved data rates over HIPPI channels. Interestingly, while the numbers are different, the ratios hold.

8 Ruwart, T. M. and O'Keefe, M.T. 1993. "Performance of a 100 megabyte�second di,_k array" (Preprint

93-123), University of Minnesota, Minneapolis M.N.

9 This approximation was developed by measuring the cycle consumption required for an IBM RS/6000
980 server to sustain a 50 MB/Second data rate over a HIPPI channel utilizing the IPI-3 protocol. It

required approximately half of the available processor cycles to achieve this rate thus allowing us to

extrapolate that every 5 MB/sec of data rate required 5% of the processor. Striped SCSI, due to the larger
number of small I/O chunk requests and the need to re-assemble such chunks would require more. For

furthur reading please see:

• Arneson, D., Beth, S., Ruwart, T. and Tavakley. 1993 ",4 testbedfor a high performance file server"

Procedings of the 12th IEEE Symposium on Mass Storage Systems, April 26-29, Monterey C.A.

• Chen, P.M. and Paterson, D.A. 1990. "Maximizing performance in a striped disk array" Proceddings

of the 1990 International Symposium on Computer Architecture, pp. 322-331.

io In certain extreme cases, the addition of additional I/O ports on UNIX workstations configured as

servers may actually have the effect of reducing the overall throughput of the server. This counter-intuitive

phenomena results from the higher multi-programming level necessary to manage the increased number
of I/O ports and data movement operations that result from such additions. The increased interrupt rate

across the system bus and within the OS can lead to diminished overall throughput. Data supporting this
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observation,developed on an IBM RS/6000 980 server driving multiple HIPPI channels is available from

the author on request.

11The original Nomograph upon which the representation shown in this paper is based was developed by

Dr. Mark Seagert's and Dr. Dale Nielsen, both at the Lawrence Livermore Computing Lab, as a method

of estimating the data demand and transfer speeds required to feed future generations of processors
envisioned at LLNL. Additional data points relating to ATM and video frame transmission were added by

the author.

2 Vendors that we are aware of today who have either announced products or announced their intentions

of developing products to interface HIPPI, FC and/or ATM to existing Ethernet and FDDI networks

consist of Netstar Inc., Essential Communications, Bay Networks and FORE Systems. Additional vendors
have announced intentions to enter this market in some form or another.

_3 Hyer, R., Ruth, R. and Watson, R. 1993. "High performance direct data transfer at the National

Storage Lab" Procedings of the Twelth IEEE Symposium on Mass Storage Systems, Monterey, C.A.

April 26-29, 1993.
_4 Wood, L. C. 1994. Gen 5 Storage Server - General Information. Maximum Strategy Inc., Milpitas CA.

15 The author would like to recognize the invaluable contribution of John Lekashman, Bruce Blaylock,

Bob Ciotti, and many others at NASA-Ames for assistance in the design and validation of the specific

function splits described in this paper. Without their help in measuring and understanding the choke

points in NFS data flow we would not have been able to accomplish this project in the time frame

required.
_6 SPANS (Simple Protocol for ATM Network Signalling) is a proprietary API developed by FORE

Systems as a method to set up and control FORE's family of ATM switches. The current lack of a

complete standard for ATM has led to the development of several competing proprietary access and
control schemes; most of them not compatible with other vendors switch and interface hardware.

17Haas, P. 1994. "Optimal UDP buffering for UNICOS 8.0 NFS" University of Stuttgart, Stuttgart,

Germany. (an unpublished work)
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Abstract

A useful method for the kinetic study of the hydrolysis of polyester elastomer is established
which uses the number-average molecular weight. The reasonableness of this method is
confirmed and the effect of magnetic particles on hydrolysis is considered.

Introduction

Long archival lifetime is an essential property of magnetic recording tape for data storage. It
is well-known that the archival life of tape depends on various factors, all of which may be

important. This paper is a basic study on estimating the life of magnetic recording tape as
affected by degradation of the binder. Polyester elastomer is used as the binder in magnetic

recording tape, and one of the factors of tape degradation is hydrolysis of the binder.
Hydrolyzed binder is adhesive and the tape with hydrolyzed binder may be sticky.

This paper first describes a method for the kinetic study of the binder's hydrolysis.
Following that explanation, the appropriateness of this method is discussed, together with
the influence of the magnetic powder.

Method and Materials

Determination of the reaction rate is necessary for estimating the tape life. Ester hydrolysis is
a second order reversible reaction in which ester group and water are involved. Since there is

a large quantity of water in the air, it may be assumed that the amount of water in the air is
constant. Thus the rate equation of ester hydrolysis can be expressed as a function of ester

concentrations only (1).

C=/C=0=exp(-k't) (1)
Ce • Ester concentration after storage.

C=o " C= at T=O (before storage)

k' • Rate constant.

t • Storage time

The reaction rate is calculated using the changing rate of ester concentration, but it is difficult
to measure the ester concentration in polymers. The rate equation for this case can be

expressed using the molecular weight of polymers.
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Defining the number of molecules in unit weight as N and ester concentration in unit weight
as Ce, the relationship between N and Cc may be shown as in figure 1 and represented by the
following equation (2).

Ce=Nc-N (2)

C, : Ester concentration in unit weight

N : Number of molecule in unit weight

N, : N after storage at C,=0

Combining equations (1) and (2) leads to (3).

N=N_-Ce0 exp(-k't) (3)

Defining the number-average molecular weight in unit weight as Ma, the relationship between
N and Mn may be represented by the following equation (4).

N=I/Mn (4)

Combination of equations (3) and (4),

I/MR=Nc-Ce0 exp(-k't) (5-1)

(5-1) at t=0 gives (5-2)

I/M,o=Ne-C_0 (5-2) Mn0: Ms at T=0 (before storage)

Eliminating N_ from equation (5-1) and (5-2),

1/Mn- 1/Mn0=C¢0(1-exp(-k't)) (6)

Approximating exp(X) when X<<I leads to (7).

1/M,- 1/Mn0=Ce0k't (7)

Finally, redefining C,0k'=k",

1/M,- 1/Mn0=k"t (8)

Equation (8) is the rate equation of ester hydrolysis expressed by number-average molecular
weight (M°) of the polymer and it is used in estimating reaction rate. Equation (8) coincides
with the empirical equation of Huisman [1].

The sample used in this study is a normal chain polyester binder and initial molecular weight
varies from 30,000 to 40,000. This simple structure is chosen for a basic study. Thin film
made from this binder is stored in accelerated aging conditions, that is, high temperature and
high relative humidity. After a few weeks' storage, the film is dissolved in tetrahydrofuran
(THF) and the molecular weight measured by gel permeation chromatography (GPC).
The conditions of GPC are as follows:

System : Waters GPC system

Columns : Waters Ultrastyragel 500 angstrom and Linear 106 angstrom
Effluent : Tetrahydrofuran (THF)
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Detector :Differential refractometer(RI)

Results and discussion

Figure 2 shows plots of (1/Mn-l/M,0) vs time for storage at 30 C/90% RH, 50 degrees/90%
RH and 65 C/90% RH. These plots show that (1/M,-1/Mn0) is proportional to time and
confirm the rate equation (8). The reaction rate constants which are the slopes of the plots
increase as the temperature increases. Table 1 shows the rate constants at 90% RH which are
calculated from the plots of Figure 2.

Figure 3 shows the Arrhenius plot of the rate constants. An activation energy is calculated
from Arrhenius' equation and it is about 110kJ/mol. Now we can estimate the rate constants
at various temperatures when the relative humidity is constant at 90%.

Figure 4 shows Arrhenius plots in other humidities. Activation energy is not dependent on
relative humidities.

Figure 5 shows the relationship between rate constants and relative humidities at 65 C.
Relative humidities and rate constants are in proportion. The reason for this is that the sample
films are so thin that moisture diffuses rapidly. Equation (9) derives from (8) in
consideration of this effect.

(1/Mn- 1/M_0)/H=k* t (9) H : Relative humidity

Rate equation (9) exhibits the effect of relative humidity.

The effects of storage temperature and humidity on the hydrolysis of polyester are clarified.
Thus we can estimate the reaction rate in every environment. Half value periods of molecular

weight can be estimated.

Table 2 shows rate constant and predicted half value periods of molecular weight. The
hydrolytic speed of 65 C/90% RH is about 1000 times that of 20 C/65% RH. For example,
half value periods of molecular weight of this sample are estimated to be about 100 days at
65 C/60% RH and 50 days at 65 C/90% RH. The number of days was confirmed by storing
until the molecular weight decreased to half value. Figure 6 and table 3 show the data.

Binder and magnetic particles are principal ingredients of the paint of magnetic tapes. We
found that the presence of magnetic particles reduced activation energy. Figure 7 shows
comparison of Arrhenius plots of polyester binder with metal particles, with oxide particles
and without particles. Activation energy decreases when magnetic particles are mixed with

polyester.Catalytic action by magnetic particles is shown by these data. This shows that ester
hydrolysis is accelerated by catalytic action of magnetic particles.

Catalytic action disappeared in the case of binder with magnetic particles covered with
adsorbate citric acid or the like, shown in figure 8. The decrease of activation energy is not

observed for the binder with magnetic particles covered with citric acid. It is supposed that
such catalytic action occurs by interaction of activation points of the magnetic particles and
binder adsorbed at the points. Thus the catalytic action disappeared when the activation

points were covered with adsorbate.
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N • Number of molecule in unit weight
Ce • Ester concentration in unit weight

N= 1, Ce=4

O-O OO-Q
N=2, Ce=3

OOOOO
N=Ne=5, Ce=0

v Ce= Ne-N

( equation 2 )

Fig. 1 Relationship between N and Ce

6.0

5.0 

4.0 _

3.0

2.0

_ 1.0

65 degrees C/90%RH _,

j j J"

,,_ 30 degrees C/90%RH

.,f 50 degrees C/90%RH

Time (days)

Fig.2 Variation of molecular weight in 90%RH

Table 1. Rate constants at 90%RH

Temp. (degrees C)

30
Rate constants k" (1/days)

5.0x10 -9

50 7.6x10 -8

65 6.0x10 -7
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Fig.5 Effect of relative humidity on rate constants (k")
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Table2. k",k' and Half value periods of molecular weight (Mn)

IT mp.i
20

,Q ....

4O

5O

65

%RH

65
60

90

60

90

60

90

60

90

k" (l/davs)
8.0x!0 510

4.1x10 -9

4.9x10 -9

1.7x10 -8

2.0x10 -8

6.3x10 -8

7.6x10 -8

3.9x10 -7

5.9x10 -7

k* (1/davs)

1.2x10 -ll

5.0-7.0 xl0 -11

2.0-3.0 xl0 -10

8.0-11.0 xl0 -10

6.0-7.0 xl0 -9

Half v_lue period (years)
110

15.0-25.0

4.0-5.0

1.0-1,5

0.1-0.2

4.0

3.0

2.0

1.0

0

65 degrees

!11 3" ........................._..........,.,;-:_,..............."':_.................9_.................

_'" :":°"65"d;glee s C/60%RH

20 40 60 80 100

Time(days)

Fig.6 Confirmation of half value periods

Table3. Molecular weight of binder stored until half value period

Time (davs)

0

9,

29

37
48

58

69

Molecular weiuht
v

65 de_rees C/60%RH
v

39041

35_47
31667

29975
28495

249O9
24002

21880

20512

(Mn)

65 degrees C/90%RH
39041

37367
27620

22419
20730
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Fig.7 Comparison of Arrhenius plots of k" between
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Fig.8 Comparison of Arrhenius plots of k" between
with adsorbate and without adsorbate
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Conclusions

1. We established a useful method for the kinetic study of the hydrolysis of polyester
elastomers in magnetic tapes. Using number-average molecular weight (M,), the rate
equation of polyester hydrolysis led to the equation (1/M,-1/M,0)/H=k* t.

2. Catalytic action by magnetic particles is demonstrated and it is supposed that such catalytic
action occurs by interaction of activation points of magnetic particles and binder adsorbed at
the points. The catalytic action disappeared when the activated points were covered with
adsorbate.

3. We make use of this method and these results to estimate the life of magnetic tape.
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Introduction

The demand that began a couple of years ago for increased data storage capacity
continues [1]. Peripheral Strategies (a Santa Barbara, California, Storage Market
Research Firm) projects the amount of data stored on the average enterprise network

will grow by 50 percent to 100 percent per year. Furthermore, Peripheral Strategies
says that a typical mid-range workstation system containing 30GB to 50GB of storage
today will grow at the rate of 50% per year. Dan Friedlander, a Boulder, Colorado-
based consultant specializing in PC-LAN backup, says "The average NetWare LAN is
about 8GB, but there are many that have 30GB to 300GB ..... "

The substantial growth of storage requirements has created various tape technologies
that seek to satisfy the needs of today's and, especially., the next generation's systems
and applications. There are five leading tape technologies in the market today: QIC
(Quarter Inch Cartridge), IBM 3480/90, 8mm, DAT (Digital Audio Tape) and DLT

(Digital Linear Tape). Product performance specifications and user needs have
combined to classify these technologies into low-end, mid-range, and high-end systems
applications. Although the manufacturers may try to position their products differently,
product specifications and market requirements have determined that QIC and DAT are
primarily low-end systems products while 8mm and DLT are competing for mid-range
systems applications and the high-end systems space, where IBM compatibility is not
required. The 3480/90 products seem to be used primarily in the IBM market, for

interchangeability purposes.

There are advantages and disadvantages for each of the tape technologies in the market

today. We believe that DLT technology offers a significant number of very important
features and specifications that make it extremely attractive for most current as well as
emerging new applications, such as Hierarchical Storage Management (HSM). This

paper will demonstrate why we think that the DLT technology and family of DLT
products will become the technology of choice for most new applications in the mid-
range and high-end (non-IBM) markets.
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DLT Technology- Media, Mechanics, and Electronics for Performance
and Reliability

The choice of using Digital Linear Technology (versus analog and/or helical scan) to
develop our tape storage products was made after an in-depth analysis of the tape media
and head technologies available inthe late 80's. We decided on metal particle (MP) media
and a tape cartridge that permits the creation of several generations of DLT products [2].

The DLT engineering development team recognized the potential of MP media early on.
Products using MP technology were already using MP tape when the first DLT product
was introduced into the OEM market in December, 1991, but the origin of 8mm technology
was actually a consumer product that was already designed to use a consumer grade
version of 8mm tape. We chose MP after an exhaustive set of tests with all of the then-

available types of media, including SVHS, Barium Ferrite, Chromium Dioxide, and MP,
because our testing proved to us that MP was to become technology's media of choice.

Initial reaction from a number of industry experts was that we had made the wrong
decision. The pending announcement of IBM's NTP (New Tape Product) and the recent

announcement of STK's REDWOOD product (both designed for high capacity and
performance) are solid proof that our choice of MP media for our DLT products was
correct. In addition, both the 8mm and DAT media products already depend on MP media
for their newest and future generation products.

We chose linear recording technology (vs. helical scan), because, with the help of Digital
Equipment Corporation system architects, we were able to foresee that transfer rate, which

was not important until the early 1992 time frame, was going to be increasingly important
in the future. We began with a 2-channel head design (using ferrite head technology) for
the first four DLT family members. It has been established that linear recording technology
allows for the increase of read/write channels with their corresponding increase in the
transfer rates. Figure 1 illustrates the transfer rate potentials for the leading 4mm/Smm
technologies versus linear recording technologies such as QIC and DLT. The graph
illustrates ability of DLT technology to continue increasing the transfer rate of subsequent
generation products by adding more parallel channels (4 channels, 8 channels, etc.).
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F = 4 channel DLT
G = 8 channel DLT
H = 18 channel DLT

Figure 1: Data Transfer Rates of Competing Tape Technologies
(Based on First Generation MP Media Products)

We chose a 4" x 4" x 1" single-reel cartridge that could handle as much media as possible

in a tape drive that could fit in the 5.25 inch form-factor envelope. We have already
demonstrated on an earlier generation DLT product (the TZ30), that even a half-height,
5.25 inch form-factor product is possible using the DLT cartridge. The cartridge size and

the half inch tape (versus quarter inch or other sizes) ensures tlaat whatever capacities omer
technologies accomplish with new media (MP1, MP2, BaFe, ME etc.) the DLT products
can surpass from 8 to 16 times, because of the amount of physical media area available
inside the cartridge.
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Figure2 illustratesthecapacitypotentialof various technologies. The bars indicate the

physical area that the media from each of the cartridge technologies would occupy, if it was
just laid out on a fiat surface.
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Figure 2: Capacity Potential of Various Technologies
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• Data Compressed 2:1

[3 Base Capacity

The combination of capacity per cartridge and transfer rate, coupled with industryleading
reliability and data integrity make DLT a technology ideally suited for meeting the rising
demands for data storage and the clear choice of products for the balance of this decade
and, possibly, well into the next.

The DLT's design features illustrate its robust nature. Mechanics, electronics, and interface
have been developed to provide a platform for performance and growth.

The heart of the DLT mechanical design is the Head-Guide Assembly (HGA). The HGA is
basically the tape path, with the head mounted on a head bracket in an integrated sub-
assembly. The tape path is comprised of six rollers, three on each side of the head. The
head bracket sits on a stepper motor lead screw that positions the head in a

horizontal/vertical motion only, allowing for random access operation. The DLT uses 128

tracks, addressed in pairs by the 2-channel ferrite head in the DLT2000 product.
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Theprimarystrategyfor the DLT mechanical design was to create a platform capable of
multi-generation products. The original HGA design resulted in a number of patents for the
basic mechanism. To achieve the tracking margin requirements [3], the off-track error
budget elements are monitored and controlled continuously throughout the manufacturing
process and via strict parts specifications. Furthermore, a stringent off-track test is
performed on every DLT drive, prior to the"Confidence" and "Data Interchange" testing
performed in manufacturing prior to shipping the product.

Because of the superior tape tracking and positioning accuracy of the HGA (Figure 3), so
far there has been no need to introduce a closed loop servo control on any DLT product.

Instead, the positioning accuracy throughout the entire length of tape is achieved by a
combination of a pair of calibration tracks located ahead of the BOT coupled with an
extensive adaptive calibration process and a series of adaptive positioning algorithms [4].
These calibration tracks, which also serve to detect the recording density of the drive, and,

therefore, the specific DLT family member, are not pre-recorded. When a drive sees a
blank tape cartridge, it automatically lays down the calibration tracks before any other
operation takes place. From this point on, the cartridge will always indicate its recording
density, thereby identifying how it should be read or written by any other DLT family
member into which it is loaded. It is not possible to record multiple densities on the same
cartridge.

The "buckling" mechanism is a self-threading mechanism whose reliability has been
demonstrated in the over 600,000 DLT products that have shipped since 1985, spanning
two generations of DLT drives (seven DLT family members). Each generation benefits
from the experience of the previous generation, leading to perfection in this very critical
part of the design. The need for robustness in the Load/Unload Mechanism is essential to
withstand continuing punishment of the hardware in tape library environments. The DLT
Load/Unload operation is heavily assisted by a number of firmware algorithms that
guarantee the reliability of the DLT's mechanical operations.

There are no capstans involved in the design. The tape moves in and out of the cartridge via
a precise servo control of the two reel motors. The servo control is designed to guarantee a
constant 4.5 oz. tension in front Of the head. The adaptive techniques mentioned earlier,
however, can introduce automatic tension adjustments if the drive detects a soft area on the
media or other reasons that may weaken the signal amplitude and/or resolution.

The DLT family's electronics support the design's requirement for performance and
expansion. The read/write channel for most recent DLT family members (DLT2000 and
DLT4000) is designed using RLL (2, 7) recording technique. The bit density of the
DLT40_ is 82,500 bits per inch (bpi). The tape speed is constant at 110 Inches Per
Second (IPS) during read and write operations. The best way to describe the sophistication
of the electronics, is to discuss some of the areas of adaptive techniques in the design:

servo and tape thickness adaptation, track positioning, head media mechanics and
electronics, and data position "learning".
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Mechanical variation of the media (which may result from manufacturing process
tolerances, for example), if not properly compensated for, can result in operation failures

or a control system that runs at a sub-optimal performance level. If this occurs, the tape
thickness and other dimensions are actually measured by the drive. The results of these
measurements are used for the various servo optimizations.

As indicated earlier, newly-purchased tapes are completely empty of data. The drive will
detect a blank tape and write on it a pair of calibration tracks. These calibration tracks are

written only once. The drive uses these tracks (located ahead of the BOT physical hole),
much the same way as a disk drive uses its servo tracks (a detailed description of the
calibration tracks' location and handling is provided in the DLT ANSI and ECMA

standards.) Accuracy in tape path design and manufacturing assembly is essential to

guarantee interchangeability without the need for additional servo information recorded
anywhere on the 1,100+ feet (DLT2000 cartridge) or 1,700 feet (DLT4000 cartridge) of

tape.

The DLT position algorithms are extremely accurate. They are able to determine the track
centerline to within 100 micro inches accuracy using extensive filtering and various

interpolation techniques.

At current DLT product densities (82.5 KBPI), any manufacturing process variation can

result in loss of signal. To minimize tolerance sensitivities and improve manulacmnng
yields, our DLT design utilizes a completely adaptive channel. Every time a previously
written cartridge is loaded, the drive adjusts its read/write electronics to ensure optimum

operation. These adjustments are not a simple correction but a very complex estimation
theory based on past experience with adaptive techniques.

The following parameters are automatically adjusted: write current, operating controls
(tension, position, etc.), mechanical offsets (head adjustments, etc.), and automatic gain
controls/channel control/various responses, etc.

The DLT drive's intelligence actually extends into "learning" the data on the tape.
Information such as "end of data" (EOD) location and Tape Mark (TM) counts allow the
DLT to find data boundaries at very fast access times by using diagonal searches. The
DLT2000 and DLT4000 drives can search for Tape Marks at 150 IPS ( a 300+ Mbyte/sec.

equivalent search speed.) The Tape Mark directory is totally transparent to the user and is
maintained and updated automatically following the completion of a write operation.

The DLT calibration process completely replaces the familiar electrical and mechanical
factory adjustment that most of today's tape drives require: There are no pots, capacitors,
head adjustments or any other fine tuning. All adjustments are done by the two on-board

microprocessors during the calibration stages.
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Oneof the unique (and well patented) features of the DLT design is its superior head and

media interface implementation. The DLT's unique head design alone deserves a sepa-

rate paper. The head is ferrite with MIG. It has six elements (2 x W-R-W channels op-
erating simultaneously). Figure 4 shows the head geometry configuration.

Write Heads

To BOT I

Tape Edges

Read Heads

Write Heads

f
,// To EOT

I
I

Tape Motion
m=..
v

Figure 4: DLT Head Geometry Configuration

The write-read-write placement of the gaps allows for "read while write" operation in

both directions. This unique design of head elements and contour combine to give the

DLT products great areal density capability as well as self-cleaning behavior. The unique

contour design virtually eliminates any separate head cleaning operation. A cleaning car-

tridge is available, but only to be used when the drive illuminates the cleaning indicator
on its front panel.

The combination of the head contour design and low tape tension results in a head life

that exceeds 10,000 hours (at 100% duty cycle). The length of DLT head life is a signifi-

cant advantage over other technologies when robustness is necessary for high duty appli-

cations. The gentleness and accuracy of the tape path design, coupled with the head con-

tour design, low tension and the quality of the MP media itself contribute to a tape du-

rability that exceeds 500,000 passes (a "pass" is defined the movement of a single seg-

ment of tape under the head). Assuming a worst case scenario, one cartridge can be used

10,000 times to completely write or read all 128 tracks (64 pairs) in the serpentine mode.
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Ourdataonlife anddurabilityof theDLT tapeshowsthatto datewehavebeenunableto
find ameasurableendof life for thetape.Ourtestsin environmentalchambershavebeen
designedto simulate10yearsof actual,continuousdriveoperation_andthetestsarestill
running.Thenumberof passesthestill-readabletapehasmadeovertheheadisnow
approaching1,000,000.Oneof theoriginalrequirementsfor theDLT productfamily, was
to implementan"IndustrialStrength"classof data integrity and reliability algorithms. The
results of our design approach are an unsurpassed combination of data detection and

correction algorithms that produce a "Hard Error Rate" of 1 x 10_7 bits read and a
combined theoretical overall undetected error rate of 1 x 10-3obits read.
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Figure5 showsthedataformatfor theDLT2000andDLT4000products.Theformat
consistsof multiple "entities." An entity is comprisedof 16x 4K datablocksand4 x 4K
ECCblocks.Within theentity,theformatsupportsrecordsizesvaryingfrom 1byteto
16Kbytes,asFigure5 indicates.At theendof eachrecord(regardlessof size),thedrive
recordsa 16-bitcyclic redundancycheck(CRC).At theendof eachphysical4K block,
thedrive recordsa64-bit CRCthatcheckstheentire4K block with asmanyrecordsasit
contains.Theentity is protectedby a "Block-Level InterleavedReed-SolomonECC"
code,thatoccupiesthelastfour 4K-blocksof theentity.TheECCalgorithmis capableof
correctingany four4K-blocksat anyplacewithin the20blockentity (including theECC
field itself). In termsof physicaltapespace,it is possibleto removea half-inchsectionof
thetapeandthedrive will beableto accuratelyreconstructthemissinginformation.
Thereis adetaileddescriptionof theDLT formatandECC/CRCalgorithmsin theappli-
cableANSI andECMA Standardsdocuments.

I1 ECC1 ECC3 I

E N P
p S C C C e E T C O
R Y R R R D R
E N RECORD C RECORD C RECORD i R S

C C N C CF L T

I o

20 Block Entity: 16 Data and 4 ECC

Figure 5:DLT2000/DLT4000 Media Format
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In additionto theECCandCRCerrordetectionandcorrectionfeatures,theDLT drivesare
capableof using"trackcenterlineoffsets"(like diskdrives)to attemptto recoverthedataas
partof theautomaticharderrorrecoveryprocedure.No softwareinterventionis neededfor
theharderror recoveryprocessto beinvoked.
TheDataCompressionAlgorithmchosenfor theDLT2000andsucceedingproducts,isa
variantof Lempel-Ziv(LZ1).TheDLT EngineeringDevelopmentGroupchoseLZ 1
(versusIBM's IDRC), afterprototypingbothalgorithmswith identicalDLT TapeDrivesin
theEngineeringLabs [5]. It wasexpectedthattheIDRC prototypewouldout-performthe
LZ1 prototypebecauseit had,potentially,almosttwicethedatathroughput.It wasalso
expectedthatthetwocompetingalgorithmswouldhaveroughlythesamecompression
ratios,with theLZ 1ratiobeingonly slightlyhigher.Testresultsshowed,however,thatin
theDLT environmentstheLZ 1consistentlyexceededtheIDRC performanceinboth
metrics.TheIDRC compressionefficiencyresultswerealsoconfirmedby benchmarking
againstothertapeproductsthatusetheIDRC algorithm.

Figure6 showsthemeasurementsof compressionratioonVMS andUN*X systems. The
difference in compression ratio between the LZ1 and IDRC prototypes show that the LZ1

prototype had significantly higher compression ratios for all the data types that were tested.

3.5

3
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Figure 6: Operating System Compression Results
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Figure7 showstheSDS-3basedcompressiontestresults.Thefirst four datatypesshow
theLZ1 prototypeaveragingaround2.4:1andtheIDRC prototypearound1.5:1.For the
paintbrushbitmapfile, bothversionscompressedataboutthesameefficiency.

> 30:1 Ratios
(truncated to fit)

3

2

Bin Source VAXcam HarGra Paint Ones Repeat

Figure 7:SDS-3 Data Compression Results

The lab test results showed that, on average, the LZ1 efficiency was at a 2.5:1 ratio vs. the
IDRC's 1.5:1 ratio. Quantum Corp. has a white paper available that provides the details of
these tests.

The DLT design supports both data compression and compaction. The advantage of the
compaction algorithm is that there is no loss of recording space on the tape. Even if the file

ends anywhere within a given entity (see Figure 5), the first record of a new file will begin
immediately after the end of the previous file without any loss of media space. The drive

automatically regenerates the ECC algorithm to cover the new information within the entity.

To summarize, the description of the major design areas of the DLT given above, although
brief, exemplify a product designed for maximum reliability. The very gentle head-to-media
interface (HGA design), the self-cleaning properties of the head, the extensive use of
adaptive techniques, and the very long media and head life tests under extreme
environmental conditions, all contribute to the reliability and robustness of the DLT

products. Using the "HP Method" of recording failures in the field (i.e., all types of
failures are taken into account during a power on period of 24 hours a day, seven days a
week), the DLT products are exceeding their specified mean time between failure (MTBF)
rate of 80,000 hours by 25%, independent of duty cycle. Two of the major contributors to

this field MTBF performance are the 10,000 hour head life and media durability.
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THE DLT PRODUCT FAMILY AND APPLICATIONS

Until the last couple of years, the primary function of the tape drive has been to backup and
archive data. As data storage requirements have been increasing at an almost exponential

rate, the need for a balance of capacity and performance has become much more critical.
With 20GB of native data recorded on a single DLT4000 cartridge, the user needs to
transfer the data in the shortest time possible. That is the reason the DLT product family

emphasizes overall performance as much as capacity per cartridge. Figure 8 shows the DLT
Product Family (second generation), beginning with the DLT260, which was first
introduced in November, 1991, as a product aimed at the OEM market. The DLT260 was

followed by the DLT600 in mid-1992, and the DLT2000 (our current high volume

product), introduced in the third quarter of 1993. The DLT2000, with a capacity of 10GB
per cartridge (native) and 1.25MB/sec. (native), is today's industry leader for this class of
products. The new DLT4000, with volume production starting early in calendar 1994,
stretches the DLT technology leadership that much further (note especially the considerable

improvements in load times)..

Data Rate (MB/s, Native)

Capacity (GB, Native)

Bit Density (bpi)

Track Density (tpi)

Media Type

Media Length (in feet)

Recording Channels

Data Compression

Load Time (in seconds)

DLT260 _ DLT20__Q_0_Q DLT4000

.800 .800 1.25 1.5

2.6 6 10 20

42,500 42,500 62,500 82,500

96 224 256 256

MP-1 MP-1 MP-1 MP-2

1100 1100 1100 1700

2 2 2 2

No No Yes Yes

60 60 45 33

Figure 8: Quantum DLT Drive Product Family
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By intent,thetransitionfrom theDLT2000to theDLT4000productwasanevolutionary
developmenteffort.As Figure8 shows,theprimarychangeswerethecombinationof the
thinnerMP media(MP2)andahigherbit density(82.5KBPI). Minor modifications to the

head were necessary, as well as the incorporation of a flex circuit containing the read pre-
amp in much closer proximity to the head. Specifically, the head core geometry was
slightly changed, but the contour and all other electrical and mechanical parameters
remained fairly close to the DLT2000 configurations.

Quantum offers not only the drive itself: The DLT product family includes a "/-cartridge
loader (half-rack form-factor, for rackmount applications) and a compact 5-cartridge loader
designed for table-top applications. The design concept for the two loaders has been to

enable the replacement of the drive only (inside the loaders) in the field by a skilled
technician.

In addition to loaders, a number of third-party robotics companies have announced and are
shipping both large and small library configurations. Figure 9 shows the vendors that offer

libraries for the DLT family of products. It has become clear in the marketplace that the
primary growth in the tape industry is in these library configurations. A number of tape
manufacturers of various technology products (DAT, 8mm, 3480/90, etc.) today offer an
assortment of library products extending from 28 cartridges to 900 cartridge robots. The
library vendor differentiation is in terms of the number of cartridges in the library and the
ratio of cartridges to drives that the robot can handle. A number of additional library
vendors are developing DLT-based products, anticipating even more capacity and higher
performance DLT products.
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I.IBBABY

DLT2500
DLT2700
DLT4500
DLT4700

DLT2000
DLT2000
DLT4000
DLT4000

BEEC,BIET_.U

5 Cart.Loader, 1 drive
7 Cart.Loader, 1 drive
5 Cart.Loader, 1 drive
7 Cart.Loader, 1 drive

50 GB
70 GB
100 GB
140 GB

ATL/Odetics ACL2640 DLT2000 264 Cartridge Library, 3
drives

2.64 TB

Breece Hill
Technology

Q7

Q47

DLT2000

DLT2000

28 Cartddge Libmry,
3 ddves

60 Cadddge Libmry, 2-
4 ddves

280 GB

600 GB

Digital
Equipment
Corporation

StorageWo_s

TL820

DLT2000 264 Cartridge Library, 3
drives

2.6 TB

Overland Data DLT Multilibrary

DLT TA200
Tape Array
Subsystem

DLT2000

DLT2000

24-120 Cartddge
Library, 1-8 ddves

240 GB - 1.2
TB

100 GB

Metrum D900

D360

D480

D28

D60

DLT2000

DLT2000

DLT2000

DLT2000

DLT2000

900 Cartridge Library,
20 drives

360 Cartridge Library,
8 drives

480 Cartridges
(add on to D360)

28 Cartridge Library,
4 drives

60 Cartridge Library, 2 -
4 drives

9 TB

3.6 TB

280 GB

600 GB

* All capacities are native.

Figure 9: Quantum DLT Drive-Based Tape Libraries
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COMPANY LIBRARY _

ADL - Media
Logic

SLA-Dbase

SLA-Dplus

SLA-Dmax

DLT2000/4000

DLT2000/4000

DLT2000/4000

1- 2 ddves, 7 or14
cadridges

2- 4 drives, 7/14/26
cartridges

2- 7 drives, 7/14_6/50
cartridges

70 GB - 280 GB

70 GB - 520 GB

70GB-1.0TB

ADIC

(Applied Digital
Inter. Corp)

N/A DLT2000 1 - 8 drives, 24 - 120
cartridges (12 cartridges

per magazine)

240 GB - 1.2
TB

APP/Grau ABBA/2 DLT2000

ABBA/E DLT2000

Up to 100,000 cartridges
(mixed media
environment)

Up to 12,000 cartridges
(mixed media
environment)

* All capacities are native.

Figure 9: Quantum DLT Drive-Based Tape Libraries (Continued)
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The increasing popularity of the DLT has led an impressive list of third-party software
vendors to support the DLT family of products and options. Figure 10 shows a partial list
of software companies that support DLT options under all the major operating systems
platforms. There is a considerable list of additional software companies who are currently
developing support for the DLT drives and options (in both Loader and Library
configurations).

Operatinq
System

Netware

Windows 3.1

Windows NT

DOS

OS/2

HP-UX, AIX

SCO UNIX

Apple System 7

Application Software

Avail 2.0

Cheyenne Arcserve NLM 4.02 & 5.01E
Systems Enhancement V 1.95
Novastor Novanet
Arcada HSM, Backup Exec
Palindrome Backup 3.1, Network 3.1, HSM 3.1

Cheyenne ARCsolo for Windows
Novastor Backup for Windows

Arcada Backup Exec for NT
Microsoft Backup (NT 3.5)

Cheyenne ARCsolo for DOS
Novastor Backup for DOS
Palindrome Director for DOS 3.1

Palindrome Backup Network Archivist for DOS 3.1

Novastor Backup for OS/2
Legato (SUNOS 4.1, Solaris 2.3, RS6000 AIX)
Novastor SGI/IRIS>5.X, RS6000 AIX, ATF/GIS System 5

Novastor (Sun Solaris 2.3, HP9000/400/700, SunOS 4.1,
.2, .3
Cheyenne ARCserve/open 2.0 (Solaris 2.3, RS6000 AIX)

Workstation Solutions/Quick Restore

SCO STP Driver

Dantz (Retrospect 2.1 A/Retrospect DLT Driver)
Novastor NovaMac

Figure 10: DLT Software Connectivity Matrix (Partial List, Valid as of 11/30/94)
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ForthoseproprietaryplatformsintowhichDLT productshavenotyet beenintegratedby
thesystemsmanufacturer,anumberof ValueAddedResellers(VARs) andSystems
Integratorshavedevelopedandoffer emulationsthatenabletheDLT productsto be
attachedto theseproprietarybussesaswell.

Considering that the popularity of Hierarchical Storage Management (HSM) is increasing
(based on the premise that the data storage requirements at the system level are increasing
dramatically every year), it is probably worth discussing the DLT's potential for making
HSM work most efficiently and economically [6].

In a recent article on HSM in the "Client/Server Today" magazine (December, 1994),
David Simpson states that "HSM has the potential to dramatically reduce storage costs and
management hassles by migrating infrequently accessed or inactive files from expensive
disk drives to less expensive storage devices." The value of HSM is that this migration
happens automatically and is transparent to the user. To differentiate between the various
HSM packages available in the market today, Peripheral Strategies developed a set of
definitions for the five levels of HSM software. Depending on the application, a user can
select the particular HSM level that incorporates the various storage devices and/or
technologies most suited for use with the range of data.

DLT products are ideally suited to become the products of choice for HSM applications.
They offer the highest capacity and performance combination in industry today for their
class of products. In addition, a number of software companies offer HSM software

support for the DLT products. In December, 1994, Cheyenne Software, a leading supplier
of software products for all major systems platforms, announced support for the DLT2000
drives within its new HSM program in addition to on all its other software platforms via
the company's ArcServe and ArcSolo software packages. Avail Systems, Arcada Software
Inc., Axent Technologies, Epoch Systems, Legato System Inc., Novastor Corp. and
Systems Enhancements Inc. have also announced DLT support on their HSM solutions as
well as on their other software platforms.
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Thenext step in the DLT family development is another 5.25 inch form-factor product with
higher native capacity per cartridge and substantially higher native performance. This new
product will use the DLT4000 cartridge and will, of course, be read/write compatible with
the previous members of the DLT Family. This new product will be announced in the
second half of 1995.

For future family members, the DLT Development Group is planning to take advantage of
all head and media technologies that other tape manufacturers who are using smaller form-
factor cartridges are bringing to market to keep up with the constantly increasing demand
for much higher capacities and increased performance. Because of the physical dimenstions
of its cartridge and the cartridge's designed-in ability to incorporate more tape, the DLT
engineering team can continue to offer industry-leadership storage capacity and products,
always able to embrace the advances other manufacturers make in tape media and head

technologies.

Our DLT development team plans to take advantage of thin-film-head technology for its
multi-channel head requirements. Metal Evaporated (ME) tape and/or Barium Ferrite
(BaFe) tape technologies, which are now being developed for the QIC and 8mm
applications, also show some potential for use in DLT technology. Our product map calls
for products to be developed with 100GB of native capacity per cartridge with 10-15
MB/sec. native transfer rates by the end of this decade. At this point, we intend to continue
to maintain, at a minimum, read compatibility with all prior generation DLT products.
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Summary

DLT is a mature and robust technology that has finally been "discovered" by the computer
market because it offers the capacities, performance, and reliability that today's systems
applications require. There is no other technology or product set available today that offers
so balanced a combination of capacity and performance with leadership in data integrity and
overall product reliability. With those strengths and their cost of ownership, these products
are the best tape storage solution in the industry.

Advancements in DLT technology guarantee that new family members will continue to be
developed for the balance of this decade and well into the next. Unless a new technology
emerges to obsolete tape media products, DLT will continue to be the tape industry leader
for this class of products.
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What is MAMMOTH?

On the surface MAMMOTH is a high performance 5.25-inch half-high 8mm helical scan

tape drive that records a native 20 Gigabytes of data on Advanced Metal Evaporated media
at a sustained throughput of 3 Megabyte per second over a high speed SCSI interface, that
is scheduled for production in the second half of 1995. But it's much more than that.
Inside its custom designed sheet metal enclosure lies one of the greatest technical
achievements of its kind. Exabyte's strategic direction is to increase throughput and
capacity while continuing to improve drive, data and media reliability of its products.
MAMMOTH adheres to that direction and the description of its technical advances is

described in this paper.

MAMMOTH can be broken down into four main functional assemblies: high-performance

integrated digital electronics, high-reliability tape transport mechanism, high-performance
scanner, and advanced metal evaporated media. All this technology is packaged into a
standard 5.25-inch half-high form factor that dissipates only 15 watts.

High Performance Integrated Digital Electronics

There has been some confusion in the industry over what commonality Exabyte's 8mm

products and 8mm video technology share. The only similarity between 8mm video
technology and MAMMOTH is the cartridge shell dimensions.

MAMMOTH employs a single processor design anchored by the AMD 29200 processor.
The top-down design methodology of MAMMOTH results in a highly-integrated system
that includes seven unique custom ASICs. The low parts count lends itself to a highly
reliable system. The electronics are surface mounted onto three printed circuit boards. The
MRF (MAMMOTH Rigid Flex) is an 'L' shaped board that contains the processor and its

supporting circuitry. The digital data path section which contains two large digital ASICs,
RAM and its supporting circuitry are also mounted on the MRF. Also contained on the
MRF are the electronics for servo control, which include driver ICs and a custom mixed

signal ASIC. The MRC (MAMMOTH Read Channel) is a rigid board that supports the
read and write operations of the drive. It contains custom ASICs and all of the discrete
filter functions. The MAMMOTH SCSI interface offers a configuration of one of four

different SCSI variants; single ended narrow (8 bits) and wide (16 bits), differential

narrow (8 bits) and wide (16 bits).
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Firmware design is accomplished by the use of 'C' code wherever possible. The code is
stored in EEPROM that is programmable, by the use of a code load tape, over the SCSI
interface, or with an Exabyte proprietary diagnostic program. The code is designed with an
eye towards the future; many of the SCSI 3 features already exist and the layered firmware
allows for easy migration to other interfaces such as serial SCSI and fiber channel. The
SCSI code is a special area of focus for the MAMMOTH designers. It is optimized for high
performance, minimal bus hogging and improved error recovery. This will provide for fast
average and predictable worst-case timing values.

In keeping with EXABYTE's strategic direction of constantly improving reliability, the
engineering design criteria has been more stringent than the product specifications allow.
These criteria include such things as power supply margins, operating temperatures and
component tolerances. All this adds up to high performance, highly reliable tape drive
electronics and firmware.

High Reliability Tape Transport Mechanism

MAMMOTH's tape transport mechanism can be broken down into three subassemblies: the
solid aluminum deck casting, the innovative capstanless design and the cartridge loading
mechanism.

Exabyte's MAMMOTH drive uses a one-piece aluminum deck casting with a belt-drive
system to load the tape path. The one-piece deck casting affords a very high degree of
rigidity and precision tolerances for greater reliability. The belt drive tape loader mechanism
that operates the two streamlined trolleys uses an angled motor/worm shaft to optimize gear
mesh and reduce axial loads. The integrated overdrive springs eliminate any timing errors
between the trolleys. The trolleys have been designed to hold very tight tolerances by insert
molding the guide pins into the arms. The use of large 6mm tape guides and rollers aid in
producing a very simplified and low stress tape path. The tape path can be manually
unloaded without damaging the media in an emergency situation.

The innovative capstanless reel-to-reel design used in the MAMMOTH tape transport
mechanism incorporates the circuitry for the supply and take-up motor controls and a
custom motor driver chip. This is all packaged on a rigid flex mounted on a metal base

plate to minimize interconnection and electrical noise. The take up motor's gear ratio allows
accurate speed control at low tape speed. This ratio also provides for increased efficiency
and low power consumption. The supply motor tightly maintains tape tension through a
closed loop control system. The assembly is designed to effectively handle not only
component tolerances but cartridge tolerances such as hub roundness.

The capstanless design used in MAMMOTH provides many benefits. Among those are
minimized edge damage by using fewer edge guides and lower edge forces when recording
on long thin smooth tapes such as AME, tape life is also extended by using fewer large
diameter guides. The capstanless design also provides for faster backhitches, improved
high speed search performance and faster load to ready times. By removing the capstan
debris is not pressed into the media by the pinch roller, also there is less debris generated in
the capstanless system.

Integrally mounted in the deck casting is the cartridge loader. It has been designed with a
sturdy metal frame for smooth quiet motion of the cartridge, and doesn't allow the cartridge

to be misloaded in the drive. The cartridge loader can also be manually operated for media
removal without damage. The cartridge loader was designed for fast load/unload times
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which are required in an automated environment. This allows for complete and simple
library integration without modification of the drive.

The deck assembly is shock mounted to the three piece sheet metal enclosure to help in
isolating the deck casting and tape path from the host system's enclosure. The electronics
are mounted along the side and rear top of the casting to help in cooling and prevent
particulate contamination from entering the tape path. The sheet metal enclosure has been
designed to facilitate cooling while minimizing any susceptibility to external radiating
sources. The SCSI interface is easily changed by removing one screw to remove the sheet
metal cover.

All of the tape transport mechanism design features add up to provide a low stress tape
path, tight control over tape speed and a library-ready cartridge loader which in turn offers
not only a highly-reliable tape drive but one which also extends media reliability. The

design also affords a simple, reliable and predictable manufacturing process.

High Performance 8mm Rotating Scanner

With the purchase of the Grundig scanner division, now known as EMG (Exabyte
Magnetics Gmbh) Exabyte now controls another piece of the core technology required to
effectively compete in the tape drive industry. Exabyte had been working with that division
for more than two years before the acquisition to develop the high-performance scanner
used in the MAMMOTH product.

The 47mm scanner was designed to maximize the utilization of tape area. The scanner's
rotational speed of more than 5600 RPM, along with a proprietary upper drum design,
provides precise airfilm control over the 4 dual azimuth read/write heads throughout the
scan. The high head-to-tape speed allows the drive to easily attain the 3 MB/sec.
sustainable transfer rate while reading and writing the MAMMOTH format. The 4 dual
azimuth read/write heads employ the same type of read-after-write strategy that has been an
EXABYTE trademark since the EXB-8200, Exabyte's first product. Head design and
media characteristics combine to give the long head life Exabyte's 8mm products have
traditionally enjoyed. The motor technology that drives the scanner is a three-phase
brushless DC motor.

One of the very innovative features of the MAMMOTH scanner is the rotary transformer.
This advanced proprietary transformer technology affords a much higher coupling
coefficient than previous designs. This coupling coefficient not only makes the high data
rates for MAMMOTH achievable but allows for easy migration to higher performance
follow-on products. The transformer configuration also allows for excellent noise isolation
to boost the SNR.

All of the design features incorporated in Exabyte's MAMMOTH scanner will provide for
high data reliability while achieving a very high level of performance in an easy-to-
manufacture product.

Advanced Metal Evaporated Media

MAMMOTH will utilize 160 meters of a high-performance advanced metal evaporated
media to store 20 Gigabytes at a rate of 3 Megabytes per second. MAMMOTH will be able
to read 8200, 8500, and the 8500c formats of the 8mm Metal Particle tape recorded by
previous Exabyte 8mm tape drives.
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TheAME mediaisbeingdevelopedbySONYCorporationinconcertwith thedrive
mechanism.Thedevelopmentgoalis to meetorbeatall previousExabytereliability
specifications.In our internaltestingthedurabilityandarchivabilityof themediaare
meetingandorexceedingexpectations.Thatresultsinaninitial specificationof atleast
1500passes,andastoragelife of atleast30years.Exabyteis veryconfidentthatthemedia
will meetexpectationsdueto all of thedesignfeaturesbuilt intotheMAMMOTH tape
transportmechanism.

Summary

MAMMOTH accomplishes Exabyte's strategic direction of increasing throughput,
performance, and capacity while improving reliability by utilizing design features such as
high-reliability tape transport system, high-performance digital electronics, a high-
performance scanner, and the use of AME media.

It furthers Exabyte's commitment to the tape industry by extending 8mm technology. The
first Exabyte product, the EXB-8200, was first produced in 1987. It gave the tape industry
the shot in the arm that has brought about a multitude of new products and technological

advances in the existing technologies. Exabyte followed the 2.5GB EXB-8200, that when
released was specified at 20,000 mean time between failure hours, with the 5GB EXB-
8500 in 1990. The EXB-8500 had a transfer rate of 500 KB/s and a MTBF specification of
40,000 hours, in that same year the EXB-8200's MTBF specification was doubled to
40,000 hours. In 1992 Exabyte introduced its second generation of products which were
half high versions of the EXB-8200 and EXB-8500. The EXB-8205/8505 were designed
in a co-developement with our deck supplier to provide additional drive and media
reliability. As a result the EXB-8205/8505 were released with double the MTBF
specification: 80,000 hours. Exabyte has recently released the 'XL' versions of the EXB-
8205/8505 that again double the MTBF specification to 160,000 hours, and extend the
capacity to 3 and 7 GB respectively. Along with the drive reliability specifications
doubling, the head life expectation also has been increased to at least 16,000 hours.

I equate the MAMMOTH tape drive to the EXB-8200 - - it will also cause a resurgence of
tape technology being utilized in many of the non-traditional tape applications such as
video-on-demand and hierarchical storage management systems. MAMMOTH also
establishes a new level of performance and reliability that is directly due to the
technological advances described above. It will initially have reliability of at least 200,000
hour MTBF, and a large library population ready to upgrade to its capacity, performance
and reliability level.
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Introduction

There are available today many data storage devices that serve the diverse application requirements
of the consumer, professional entertainment, and computer data processing industries. Storage
technologies include semiconductors, several varieties of optical disk, optical tape, magnetic disk,
and many varieties of magnetic tape. In some cases, devices are developed with specific
characteristics to meet specific application requirements. In other cases, an existing storage device
is modified and adapted to a different application. For magnetic tape storage devices, examples of
the former case are 3480/3490 and QIC device types developed for the high end and low end

segments of the data processing industry respectively, VHS, Beta, and 8 mm formats developed
for consumer video applications, and D-1, D-2, D-3 formats developed for professional video

applications. Examples of modified and adapted devices include 4 mm, 8 mm, 12.7 mm and 19
mm computer data storage devices derived from consumer and professional audio and video

applications.

With the conversion of the consumer and professional entertainment industries from analog to

digital storage and signal processing, there have been increasing references to the "convergence" of
the computer data processing and entertainment industry technologies. There has yet to be seen,
however, any evidence of convergence of data storage device types. There are several reasons for
this. The diversity of application requirements results in varying degrees of importance for each of

the tape storage device characteristics listed in Table 1.
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Table 1

Tape Storage Device Characteristics

° Reliability

- Data Reliability
- Device Reliability

° Procurement Cost

• Operating and Maintenance Cost

• Access Time to Data

• Data Rate

• Automation Compatibility

• Capacity

- Cartridge Capacity
- Automation Capacity

• Write/Read Ratio

• Form Factor

This diversity of requirements has continually reinforced the need for an economical storage
hierarchy. Continuing advances in technology have enabled the development of new devices with
enhanced capabilities. The acceptance of new devices is tempered, however, by the investment
most users have in existing tape storage volumes. For removable tape storage systems, this
!herefore presents a dilemma. Significant (perhaps 5-10X) rather than incremental improvements

m storage cost-performance assessments must be offered to make the conversion to a new system
attractive. However, in order to obtain order of magnitude improvements, it is usually necessary
to introduce significant changes in the technology components that may prevent direct device
compatibility with previous devices in an economical manner. In this respect, removable media

storage systems which often hold large quantities of archival data are unique compared to other
storage devices and components such as semiconductor memory or magnetic disk storage.

This paper discusses the device attributes that may be obtained by using advanced technology
components in an embodiment that is deemed most suitable for computer data storage applications
requiring high reliability, flexibility of data processing operations, economical storage costs,
economical maintenance and operations costs, and data rate parity with other members of the
storage hierarchy.

Storage Hierarchy

Storage hierarchies exist primarily for economical reasons. In the extreme limit of

advances in the price/performance characteristics of semiconductor memory or hard disk storage
and electronic data transfer network technology, it might be concluded that the need for tape
storage devices and removable tape media would almost entirely disappear. In almost all cases
hard disk device characteristics would be preferred. In actual fact, however, in spite of the
advances in both semiconductor and hard disk capabilities, there are five basic reasons why tape
storage will remain an important member of the computer data storage hierarchy.

1) Magnetic tape storage will remain significantly less expensive than hard disk storage.
While lower cost per storage will be a continuing trend for all technologies, it is expected that the
cost ratios will remain intact.
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2) The volumetricdensity of tapestoragerelative to other storagetechnologieswill, for
fundamentalreasons,alwaysbealargeratio.

3) With eachadvancein technology,thedemandfor datastorageincreases. Improved storage
devices enable new applications that previously were not economical and this, in turn, leads to
increased demand for additional storage.

4) Software-managed automated removable media storage libraries continue to evolve and will
be common for all applications. With this in place, optimally-designed tape storage devices will
provide a continuum of storage characteristics along with semiconductor memory, hard disk and

optical disk storage.

5) Although significant advances in electronic data transfer communication networks can be
expected in the next decade, because of band width limitations and telecommunication costs, data
interchange via physical transport of removable media volumes will remain the most economical
procedure for many applications.

Tape Storage Device Attributes

Because of the wide diversity of application requirements, there will undoubtedly continue to be
several types of devices required in order to meet all needs economically. The best a user could
hope for would be to reduce the number of types of devices that need to be supported. Setting this
as a design goal, the development objective becomes one of utilizing advanced technology
components in a design(s) that attempts to provide: 1) the greatest flexibility of uses; 2) at an
affordable price; 3) without compromising reliability objectives and at 4) performance matched to
system requirements.

The IBM 3480 technology introduced in 1985 has become the industry standard for high

performance computer data storage users. The 3480 and the 3490 and 3490E follow-on devices
have developed a well-deserved reputation for providing highly reliable operations. Those
attributes, high performance and high reliability, were responsible for its widespread industry
acceptance. In providing the technology base for the next generation of tape storage devices, it is
desirable to build upon the strengths of the 3480/3490 class of devices and enhance those factors
that are necessary to achieve the development objectives described earlier.

Analysis of the 3480/3490 device design reveals several key design features that contribute to the
performance and reliability reputation that has been achieved. These features are as follows:

1) An enclosed Cartridge System Tape (CST) that prevents accumulation of handling damage,

fingerprints, airborne debris, etc.

2) A gentle tape path and tape guiding system that minimizes or eliminates mechanical tape
damage.

3) An 18 track linear recording technology using thin film ferrite heads with magneto-resistive
(MR) read elements. The 3490E utilizes serpentine linear recording at 2X track density with
second generation MR read elements and enhanced Error Correction Code (ECC). The format is
arranged such that when writing full tapes, no tape rewind is required.

4) An ECC that utilizes the advantages of multiple track recording in a track format that
minimizes the probability of concurrent track errors due to media defects.

5) A Head-Tape-Interface (HTI) that operates at low pressures ensuring low head wear rates,

yet provides the olosely controlled spacing required for data reliability.
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6) A tapemediawith mechanicallyandchemicallystablepolymerbindersystem,magnetic
particlesandsubstratethatminimizesdebrisgenerationandprovidesstabletapemotion.

7) Reel-to-Reelservocontrol for precisetensionandvelocity control. In combinationwith
thefixed head design and an electronic buffer, both start-stop and streaming data recording/reading
are supported without performance or reliability penalties.

These are laudable design features proven in almost 10 years of field operation. Incremental
improvements have been introduced during this time as the cartridge capacity increased from 200
MB to 400 MB to 800 MB, uncompressed. Additionally, IDRC compression was introduced
along with channel data rate enhancements and cost reductions. The ability to use lossless data
compression, such as IDRC, provides benefits to both effective capacity and effective data rate.
Because data compression ratios can be highly variable, it is very possible that the storage device
can be driven into start-stop mode if the channel data rate becomes the gating factor. Hence, to get
full benefit of data compression features it is highly desirable to have a storage device that operates
in both start-stop and streaming modes.

As a result of numerous discussions with numerous customers, the following items were identified
as desired improvements to the attributes of 3490E tape transports. This listing is from a diverse
group of applications and is not to be interpreted that all items correspond to a single application.
Using the 3490E experience as a base, an assessment was made of how advanced technology
components could enable the achievement of the desired improvements listed in Table 2.

Table 2

Desired Improvements Relative to 3490E Technology

1)
2)
3)
4)
5)
6)
7)
8)
9)

10)
11)

Higher Capacity
Higher Data Rate
Lower Cost
Smaller Form Factor

Maintain or Improve Reliability
Higher Drive Utilization
No Increase in Rewind Time
Faster Access to Data

Automation Compatible
Preservation of Automation Investment
Growth Path for Future Product Enhancement

Technology Factors

In discussing the influence of technology on magnetic tape storage device characteristics, it will be
helpful to analyze the end objectives from the viewpoint of both the user parameters and the
technologist/developer parameters. To this end, it is necessary to provide a translation between
device functional parameters and base technology parameters. Such an analysis enables the
developers of new devices utilizing new technology components to prioritize the required
development activity in a manner that considers the interdependence of the various technology
components. Table 3 illustrates this point.
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The End User Parameters - _ _ and ReJJabJl_ - need no elaboration. Access
and Drive UtiliTation, however, have importance beyond the obvious. These

attributes serve as key elements in optimizing the price-performance of the complete storage
subsystem, i.e. automation plus storage devices plus media. Different applications will provide
different weighting factors to each of the sub-elements under these parameters. In the final

analysis, a device with higher throughput (for whatever reason - data rate, search speed,
load/unload time, etc.) requires fewer devices to achieve a given function. If there is not a cost
penalty for such devices, this would then result in a lower total subsystem cost, hence a better
price-performance rating. Applications such as "digital libraries" and network-attached HSM
servers will be the major beneficiaries of such characteristics.

Technology Prototypes

In what follows, we will explain the methodology of the technology development process which
began with choices for the various technology components, evolved with the assessment of their
interoperability, and culminated with building and testing of prototype devices used both to

validate the chosen operating points and to serve as an input to the product development decisions.

Technology Components

With reference to Table 3, there are a number of technology components that must be assessed and

evaluated both on a stand-alone basis and in an integrated interactive environment. We identify the
following as the key technology elements.

A) Media
B) Heads
C) Tape Path
D) Servo Systems
E) ECC
F) Device Electronics

A brief discussion of the factors involved in assessing the merits of each of the technology
components is covered in the next section. In the following section we describe the technology
elements to be incorporated into two different technology prototype devices and their resultant
device characteristics. Finally, these characteristics are compared against the Desired
Improvements listed in Table 2.

A) Media

The laws of physics determine the ultimate areal density that a recording medium can support.
Numerous other factors influence the practical limits. Factors determining the ultimate recording
density are identical for both disk and tape recording media. Practical limits, however, are

significantly different due to significant differences in the other factors, such as track guiding, fly
height, defect mapping stability, etc.

Because capacity and data rate are directly dependent upon the areal density capability of the
recording medium, choice of the recording medium is of prime importance. Numerous

investigations have assessed the recording density capability of various types of media [1] [2] [3].
It is generally agreed that a thin film medium of a few hundred Angstroms thickness with

coercivity of ~1000 Oe provides superior areal density capability compared to any single-layer
particulate recording medium. Thin film is the recording medium benchmark against which

particulate medium improvements are measured. Indeed, current high performance high density
hard disk recorders almost exclusively utilize thin film media. For saturate recording, which is
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usedin thin film disk recorders,thearealdensity capability is proportional to I-_/(Mrt), where I-I¢
is the coercive force of the medium, Mr is the remanent magnetization, and t is the media thickness

[4]. Particulate tape media generally are utilized in a non-saturate recording mode where the
coating thickness is usually greater than the recording depth. The effective recording depth is
determined by the gap length of the recording head and the media coercivity. In this case, effective
areal density can still be considered to be proportional to HcBClr. This explains the trend from ~350
Oe iron oxide recording media in the 1960s and 1970s to 550 Oe chromium oxide media and 900

Oe cobalt doped iron oxide media in the 1980s to 1500 Oe metal particle (MP) media in the 1990s.
In addition to the increasing use of MP media, smaller quantities of barium ferrite media have

appeared in floppy disk applications as well as thin film metal evaporated (ME) media for
consumer video applications.

It should be cautioned that within a given media type, there are many variations possible, including

many varieties of particle size, shape, and chemical composition, polymer chemical composition,

mixing and coating processes, etc. In other words, all media of a given generic name type, e.g.
MP, are not equivalent.

Another law of physics indicates that one parameter affecting the media signal-to-noise ratio (SNR)

is the number of particles (n) in the recording volume in a manner such that SNR ~ [5]. This
indicates that SNR can be improved through use of a medium with a larger number of smaller

particles. Numerous other practical factors influence the final choice of particle size to be used.

Finally, it is realized that volumetric density is directly affected by the substrate [6]. Thinner
substrates provide a higher volumetric density, however this desirable attribute must be balanced
with durability and tape guiding issues, the latter factor obviously being dependent upon the tape

path and the tape transport system.

B) Heads

Writing and reading data is accomplished via an intimate compatible relationship between the
magnetic recording media and the magnetic recording/reading head. There are numerous design
parameters that the head design engineer has at his disposal for optimizing the performance for a
given type media. The head indeed plays a central role in providing a suitable transfer function
between the write/read electronic circuits and the writing and reading of magnetic flux transitions in

the recording media. In addition to the function of writing and reading of data, head design
involves factors which influence a stable Head-Tape Interface (HTI) which is necessary for data

reliability and tribology factors involving wear (of both head and media) and friction. For
advanced recording systems, new media and head technology components are developed together

to allow for intelligent design trade-offs and optimized system performance.

Write heads utilize an inductive coil of various designs coupled with a suitable magnetic pole tip

material and write gap design that provides sufficient magnetic field strength to efficiently write
flux reversals in the recording medium. IBM 3480/3490 technology utilizes a nickel-zinc ferrite

( -3000 Gauss) ,iaterial for the recording head pole pieces. While this is suitable for
efficiently writing chromium oxide (Hc -5500e) media used in 3480/3490 systems, this material
is not capable of adequately writing 1500 Oe MP media. The ability to write higher coercivity
media to get the benefits of higher areal density recording capability therefore requires the
development of a new head design employing higher saturation magnetization pole tip material. A
generic class of Metal-In-Gap (MIG) head designs has evolved for this reason. Most have been
developed for rotary head type recorders. The ability to utilize MIG-type designs in a 348013490-
like embodiment, i.e. stationary head, multi-track longitudinal recording, requires some unique

features in both materials and fabrication processes.
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Readheadsmayemployeitherinductiveor magnetoresistive(MR) readelements.For inductive
readelements,thesignalamplitudeis proportionalto N d Idt, where N is the number of turns

and d /dt is the rate of flux change. The rate of flux change is, in turn, proportional to the relative
head-tape velocity. All rotary head recorders utilize inductive read heads. Unlike inductive heads,
magnetoresistive heads provide a signal amplitude that is velocity independent. Furthermore, MR

elements can be designed to provide high output signals with little required real estate or process
complexity required for thin film inductive heads with a large number of turns. This is particularly
important for 3490-1ike recording technology that employs 18 read and 18 write elements in each

of the 2 modules required to make a recording head. The MR design enables a simplified thin film

semiconductor-like process capable of fabricating the 36 elements per module economically. As
track densities increase, the benefits of the MR design become indispensable. MR read elements

were introduced in the 3480 product in 1985. A second generation improved MR design was
introduced in 1991 with the double track density 3490E design. A new inductive thin film write

head with third generation MR read head design was developed for the technology prototype
devices described here.

Magnetic tape storage recorders are electro-mechanical devices. The reliability of electro-
mechanical devices is usually gated by the mechanical components. Hence, in order to achieve

high reliability in a high performance computer data storage device, special attention must be paid
to the mechanical portion of the tape path/tape transport design. Some of the requirements
expected of the tape transport are reviewed in [7]. Suffice it to say that a reliable tape transport
requires accurate velocity, tension, and tape guiding control while maintaining HTI stability and
without damaging the media under repeated accesses in both write/read and high speed
search/rewind modes. Features built into longitudinal recording stationary head devices enable
highly reliable streaming or start-stop operations. These features include economical electronic

buffers of sufficient size to totally mask the acceleration/deceleration times of tape movement.

For advanced operating point devices employing higher track densities, it is necessary to further
improve the tape guiding envelope and, for interchange applications, the accuracy of the initial
alignment of the head to the recorded tracks. As the advanced media and head components allow
ever narrower tracks, the mechanical registration tolerances become the dominant issue limiting
track density. At some point it becomes economically advantageous to introduce a head servo

capability in lieu of ever more precise (and expensive) mechanical tolerances required to achieve
the goal of increased track density and hence capacity.

 zy.9 .vzle,

Servo systems of varying function are utilized in high performance tape storage devices. These
functions include velocity and tension control in reel-to-reel driven transports such as 3480/3490

type, and synchronization of scanner speed with tape velocity for accurate tracking in various
rotary head recorders. The use of a reel-to-reel tape transport servo system also enables a simple
means of obtaining high-speed search capability.

While hard disk storage devices have employed active head positioning servo systems for many
years as a means of reducing misregistration tolerances between the head and the written track,

such active head positioning servo systems have yet to be employed in longitudinal recording
format tape storage devices. Based on the discussion in the previous section, the ability to utilize
head positioning servo systems in combination with accurate guiding tape transports, enables the

attainment of higher track densities (hence higher capacities) without having to resort to longer
length media and concomitant increases in search/rewind times.
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E) Error Correction Code (ECC)

Error Correction Codes are employed to provide an uplift to the data reliability achievable from

practically available media quality and device performance. Raw bit errors can be a result of a
variety of causes, including a) local media defects such as coating contaminants, b) global media
defects such as damaged edges, creases, adherent debris, c) adherent head contamination, d)
transient non-adherent particulate debris at the head/tape interface, e) clocking errors due to

velocity transients, and f) electronic noise.

The different types of error sources usually have a distinctive signature of raw errors which
includes parameters such as error length, error reproducibility, error coincidence across multiple
tracks, etc. The measured raw bit errors are of course critically dependent upon the data channels

employed and the optimization of equalization and detection schemes for the variety of defect

signals experienced.

In order to meet some end user data reliability target, the developer must first characterize and

specify the media quality in terms of both average bit error rate (ber) and error distribution (error
lengths and coincidence) as input to deciding which ECC scheme will meet the required objectives.
It is meaningless to talk in terms of an average ber only without addressing the defect spatial and

temporal distribution. A robust recorder design must also allow for possible increases in errors
during either storage or heavy use of the media in order to achieve the desired performance
objectives. Many claims that are made about corrected ber in various product advertisements do
not define what is or is not included in the claim, frequently leading to "apples and oranges"

comparisons.

The effectiveness of the ECC is intimately connected with the spatial distribution of the data format
written on tape. Multi-track recording heads enable a more robust ECC since data is distributed

laterally across the width of tape as well as linearly (temporally) along the length of tape. In
systems utilizing a large number of concurrent channels, ECC robustness is enabled by reducing
the probability of encountering extended concurrent defects of duration sufficient to defeat the
ECC. This is extremely important for reliable data recovery from marginally recorded or degraded
archive media. 348013490 devices utilize 18 concurrent channels. Data recovery is possible with

1 or 2 data read-back channels completely disabled. Obviously this would not be possible in 2

channel recording systems.

Thus multi-track recording formats can be used advantageously for enhancing data reliability. It is

also apparent that performance (i.e. data rate) enhancements result from the use of multi-track
formats. This ability to obtain both reliability and performance enhancements is what has been
touted for RAID disk technology. In effect, tape storage devices have been utilizing these concepts

for many years with the paradigm shift that the "Inexpensive Device" is the recording element in
the multi-track head rather than a complete device. Indeed, because of the differences of tape

devices compared to disk devices in achieving device synchronization and the stability of defects,
we believe it is more practical to consider RAID type benefits for tape devices as occurring at the
multi-track head level rather than schemes employing multiple devices. There is of course a cost
associated with the benefits obtained by the use of multi-track recording technology. This includes

a more expensive head and the additional cost of the additional read/write channel electronics.

F) Device Electronics

The increased density and decreased cost per circuit for semiconductor chips during the past
decade has been nothing short of phenomenal. There is no indication that this progress will not

continue. The power of using advanced recording media and heads combined with the advanced
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semiconductorcomponentsenablessignificantrecordingdeviceperformanceimprovementswhile
maintainingsimplemechanicalcomponents(i.e. high mechanicalreliability at low maintenance
costs)andsimilar or reducedacquisitioncosts.Theseconcurrenttechnologyadvancementtrends
havestrongly influenced the decisionsinvolved in the design, assemblyand testing of the
technologyprototypedevices.

Technology Prototype Devices

I) Technology Component Selection

Based on the analyses in the previous sections, the technology development team selected and

developed the following technology components for incorporation into technology prototypedevices.

A) _ - MP (1500 Oe class)

° Metal particle type chosen for optimal balance to meet both SNR and archival
stability requirements

• Polymer binder system - uniquely developed to meet stringent
performance/reliability requirements

B) H_ds - multi-track linear recording

• Third generation magnetoresistive (MR) read elements

• Inductive thin film write elements

• New thin film shield/write pole tips materials/design needed to meet write
performance and head-wear lifetime requirements

C) _ - varies by technology prototype design

Reel-to-reel servo for velocity/tension control

Active head posi tioni ng actuator/servo

E) ECC- Reed-Solomon

• Enhanced and scaled with areal density increases

F) Device Electronics - per performance and form factor objectives of technology prototype

Upon reviewing the eleven items listed as Desired Improvements in Table 2, it became apparent
that a single prototype design would not be able to address all the items on the list. Therefore it

was decided to build and test two different designs utilizing a common advanced technology base.
In combination, the two different designs are able to address all eleven items.

II) Technology Prototype I

Of paramount importance in the selection criteria for the Prototype I design was preservation of

automation investment. This requirement translated into the use of a 3480 CST type cartridge for
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compatibility with theIBM 3494 and 3495tape libraries. Useof a CST type cartridgewould
therebyprovide for coexistenceof 3490 andan advancedfunction drive type to enableboth
investmentprotectionandmigrationcapabilityto newtechnology.

Following this decision,it wasdecidedto utilize thebasic3490 tapepath sincethis designhas
beenprovenwith approximatelytenyearsof field experiencesincethe introduction of 3480in
1985. To obtain maximum benefit of the field experience,it was further decided to utilize
approximatelythe samemediathickness,and hencemedia length,as is utilized in the3490E
extended length cartridge. This ensuressimilar media mechanicalproperties favoring the
establishmentof a stableandreliableHTI with minimal developmenteffort. Since the stated
objectiveswereto increasecapacity,including track density,early investigationsweremadeto
understandthevariousfactorscontrollingthetapeguidingenvelope.Theresultof thishasbeento
introduceinto thetapepathdesignsubtleimprovementsto both the3490tapepathandcartridge
designthataredesignedto reducethetapeguidingexcursionsand thereforeenablehigher track
densities.

Many mediatypes were investigatedwith compatibleread-writeheaddesignsto assesstheir
storagecapacitycapability. Possibleextensionsof the550 Oe chromiumoxide mediausedin
3480/3490deviceswerejudged not to beof sufficientmagnitudeto leadto anattractivedesign
point. MP mediaprovidedthebestoverall capability,but led to therequirementof beingableto
developa compatibleread-write headdesigncapableof meetingall functional requirements
includinglow wearandlongoperationallifetime. This wasamajor developmentcheckpointthat,
onceachieved,committed the prototypedesignto MP media. Headand mediawere thenco-
developedtooptimizetheircombinedperformance.

With continuedco-developmentof headandMP mediatechnologycomponents,it wasassessed
thatgreaterthananorderof magnitudearealdensityimprovement,relativeto 3490Etechnology,
could beobtainedwithout anactiveheadpositioningactuator/servotechnology. However, in
ordertoprovidefor futurecapacityenhancementsusingthesamecartridge,andto providemeans
toensuredataintegrityandprotectagainstneighboringtrackoverwriteencroachmentathigh track
densities,it wasdecidedto incorporateservotrackswritten on tapeandto incorporateanactive
headpositioning servosystem. Sucha systemis new to linear tape recording systems,but
borrowsfrom theextensivetechnologydevelopedfor disk systems.The utilization of anactive
headpositioning systemreducestrack misregistration (TMR) errors without the needfor
expensive,highprecisionmechanicalcomponents,andthereforeenablestheattainmentof higher
trackdensities.

GiventhesechoicesandtheappropriateECCandchannelelectroniccircuitry, a designtargetof
10GBcartridgecapacitywith 9MBlsec dataratewasestablished[8]. The 12.5X (relative to
800MB 3490Etechnology)capacityincreaseisobtainedby operatingat approximately4X track
densityand3X lineardensity.All valuesareuncompressed.It is judgedthatenhancementof the
chosentechnologycomponentswould providefor additional2X-4X multipliers to bothdatarate
andcapacitywithoutcompromiseof datareliability. Shouldtheconstraintof usingthesamemedia
beremoved,it ispossiblethatevengreaterenhancementscouldbeachieved.

Performanceandcapacityenhancementscouldalwaysbeobtainedby reducingoperatingmargins
thatrelateto robustnessof thesystemdatareliability. Thedesignpointchosenfor PrototypeI and
theexpectedpossibleextensionsutilize thenewtechnologycomponentsin a mannerthatdoesnot
compromisedatareliability.

A comparisonof thePrototypeI designpoint to the list of elevendesiredimprovementsindicates
thatsevenof theelevenobjectivesareachieved.TheyarelistedinTable4.
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Table4

FunctionsAchievedComparedtoDesignObjectives

1) HigherCapacity 10GB (0.8GB)
2) Higher Data Rate 9MB/sec (3MB/sec)
5) Maintain/Improve Reliability Yes
7) No increase in Rewind Time Yes

9) Automation Compatible Yes
10) Preservation of Automation Investment Yes
11) Growth Path Yes

HI) Technology Prototype II

Items 3, 4, 6, and 8 that were not achieved by the Prototype I design became key focal points in
defining the design objectives for Technology Prototype II. The design was based on most of the
same base technology elements, including the media and head, that were used in the Prototype I
design. The major change that was made in the Prototype II design point involved the design of a
new tape cartridge and tape path. Such changes were deemed necessary to achieve the design
goals of items 3, 6, and 8. Several of the design objectives set for Prototype II are similar to those
set in an earlier development effort [9].

For many of the emerging data storage applications involving network hierarchical storage
management (HSM), digital libraries, and "parking garages on the information superhighway,"
current tape storage devices have several deficiencies. Key among the missing attributes is fast
access time for data retrieval. There are two aspects to obtaining fast access time to data. The first
is what may be termed the human factors aspect gauging user satisfaction against system response
time. The second factor involves the price-performance aspects of a storage subsystem. A fast-
response tape device with short rewind time leads to higher device utilization, i.e. the throughput
rate per device is higher. This leads to fewer devices needed to perform the storage subsystem
function and hence to overall lower storage subsystem costs.

Any tape storage device will still have orders of magnitude slower response time compared to a
disk storage device, however the storage cost for tape will have a couple orders of magnitude
advantage. This is enough incentive to employ a hierarchical storage system. The Prototype II
design was developed to provide significant advantage over existing devices for these applications.

For both form factor reasons as well as access time and drive utilization reasons, it was desirable

to have a high areal density recording technology. This would enable high capacity on a shorter
length of media. Hence MP media, compatible head technology and active head positioning
actuator/servo become the key enablers of such a prototype design. The next key design factor
was the selection of a 2-reel cartridge with a self-contained tape path. This provided the ability to
improve access time and drive utilization by not having to extract the tape from the cartridge in
order to engage the head. Of equal importance, this design has the added benefit of improved
mechanical reliability. By defining the Logical Beginning of Tape (LBOT) at the Physical Middle
of Tape (PMOT) additional improvements are achieved in both access time and drive utilization.

A 5 1/4 Hform factor compliance was set as a goal, thereby setting an upper limit for the cartridge
size. Other aspects of the objectives criteria refined the constraints on cartridge size further.
Factors affecting ECC design, available electronic circuitry and data format were common with the
Prototype I decisions.

Table 5 summarizes which of the desired objectives listed in Table 2 were achieved in the

Prototype II design using the technology components previously described.
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Table5
Prototype II

Functions Achieved Compared to Design Objectives

1)
2)
3)
4)
5)
6)
7)

8)
9)

10)
11)

Higher Capacity

Higher Data Rate
Lower Cost
Smaller Form Factor

Maintain/Improve Reliability
Higher Drive Utilization
No Increase in Rewind Time

Faster Access to Data

Automation Compatible
Preservation of Automation Investment
Growth Path for Future Enhancements

Yes 5GB (0.8GB)

No a 2.2MB/sec (3MB/sec)
Yes
Yes
Yes
Yes
Substantial Reduction

8 sec (30-50 sec)
Yes 8-10 sec (30-50 sec)
Yes

Nob
Yes

systems.

Design is family compatible with higher data rate capabilities.
Drive/Cartridge design enables compatibility with new high speed automation

Conclusions

Advanced technology elements indeed enable advanced tape storage device capabilities. How such
technology elements are utilized in particular device embodiments is highly dependent upon the
application solutions that are targeted. The functions achieved in the Prototype I design were
targeted to provide evolutionary, albeit saltatory, performance extensions to the 3480/3490 type
products for their historical tape processing applications. Functions achieved in the Prototype II
design are directed to providing solutions for a) cost-effective, lower performance historical
applications and b) the putative new emerging applications. Both designs utilize a common
technology base. This divergence in device designs is not unique in the storage industry. In the
disk storage business, utilization of new technology capabilities has resulted in smaller disk files

with higher capacity than their predecessor larger size disk products. The very reasons that
provided those decisions for disk products, as opposed to simply increasing capacity on a large
disk, will serve to guide the future direction of expected new tape storage devices. More than ever
before, it is necessary to incorporate into the device design objectives, the performance objectives

of the total storage subsystem rather than treating the device by itself.
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A recording density of 10 Gbit/sq. in. is being pursued by a number of companies and

universities in the National Storage Industry Consortium. It is widely accepted that this

goal will be achieved in the laboratory within a few years. In this paper approaches to

achieving 100 Gbit/sq. in. storage densities are considered.

A major obstacle to continued scaling of magnetic recording to higher densities is that as

the bit size is reduced, the grain size in the magnetic media must be reduced in order that

media noise does not become so large that the signal to noise ratio (SNR) degrades

sufficiently to make detection impossible (1). At 100 Gbit/sq. in., the bit size is only

0.006 square micrometers, which, in order to achieve 30 dB SNR, requires a grain size of

about 2.5 nm. Such small grains are subject to thermal instability, and the recorded

information will degrade over time unless the magnetic anisotropy of the materials used is

increased significantly, or the media thickness is made much larger than expected on the

basis of scaling today's longitudinal media thickness.

Perpendicular recording may enable one to use larger media thicknesses and therefore

increase the volume of the grains, making it possible to overcome the thermal stability

issues. However to record at such high densities onto perpendicular media will require

that contact recording be used. Probe heads such as the Micro Flexhead(TM) components

proposed by Censtor may provide a solution to this problem (2).

Another solution may be to use structured media in which the bit cells are defined by

lithographic or otherwise created structure in the recording media. If the bit cells are

defined, then each bit can be stored on a single particle, and instead of requiring 1000

grains per bit, it is possible that 1 grain per bit would be adequate. In this case recording

densities as high as 10 Tbit/sq. in. would theoretically be thermally stable with today's
materials.

Alternatively, bits could be recorded in the form of cylindrical domains in perpendicularly

oriented, exchange-coupled magnetic media, like those used for magneto-optic recording

today. With careful design of the magnetic parameters of such media, it is possible to

balance the inward directed force of the domain wall surface tension against the outward

directed force of the demagnetizing field. This produces a magnetic domain which is

easily stabilized by moderate coercivity. Using near-field magneto-optic recording,

domains have already been written and readback at a density of 45 GBit/sq. in. in such

media (3). These domains have been shown to be thermally stable for several years in
these media.
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Whatever form of recording media is utilized, it is likely that some form of near-field

magnetic or optical probe head will be required to record and playback the data. In order

to achieve the desired resolution, the head will likely have to operate with a head-media

spacing of less than 10 nm. Although it is too early to say for sure that such heads could

not be "flown" above the media surface on a slider, it currently appears more likely that

either the probe head would be run in contact with the media, or that some form of

active feedback would need to be used to keep the probe head in close proximity to the

media similarly to how feedback is used to control the head- media spacing in atomic force

microscopes (AFM) today. If the AFM approach is used, then some means must be

found to enable an adequate data rate. Theory and experiment indicate that, if a probe

head is used with feedback, the data rate from a single head will be limited to a few

megahertz (4).

One approach to achieving higher data rates would be to use an array of probe heads. L.

R. Cartey, et al. have been micromachining arrays of probe heads, actuators and control

electronics for head positioning on a silicon wafer (5). This offers one approach to

achieving the high data rates that are required.

In conclusion, storage densities of 10 Gbit/sq. in. are likely to be achieved with

longitudinal recording; however, densities of 100 Gbit/sq. in. appear to require some

changes in approach. Perpendicular recording, structured media and exchange coupled

media all offer possible solutions to the thermal instability which is expected to result

from too small a grain size. Because of resolution requirements, some form of probe head

spaced less than 10 nm from the media is anticipated to be required.
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Testing

Abstract

A flow geometry and flow rate for mixed flowing gas testing is proposed. Use of an
impinging jet of humid polluted air can provide a uniform and reproducible exposure of
coupons of metal-based magnetic media. Numerical analysis of the fluid flow and mass
transfer in such as system has shown that samples confined within a distance equal to the
nozzle radius on the surface of impingement are uniformly accessible to pollutants in the

impinging gas phase. The critical factor is the nozzle height above the surface of
impingement. In particular, the uniformity of exposure is less than +/- 2% for a volumetric
flow rate of 1600 cm3/minute total flow with the following specifications: For a one inch

nozzle, the height of the nozzle opening above the stage should be 0.177 inches; for a 2
inch nozzle - 0.390 inches; for a 3 inch nozzle - 0.600 inches. The tolerance on these

specifications is 0.010 inches. Not only is the distribution uniform, but one can calculate
the maximum delivery rate of pollutants to the samples for comparison with the observed
deterioration.

]0

Introduction

Recording density and archivability are important characteristics of any data storage
medium. Metal-based tapes such as metal particle (MP) and metal evaporated (ME) media

perform well in recording but might, however, be vulnerable to corrosion.

Direct exposure to humid polluted air is a basic test of the archivability of a medium. For
example, accelerated testing of MP media several years ago indicated some susceptibility to
corrosion [ 1]. Although a tape cartridge or cassette must be considered as a "system" that
affords protection of the tape by virtue of the spooling and incorporation into a package, the
most basic line of defense against deterioration is the corrosion resistance of the media

itself.

We have developed a corrosion test protocol based on the Battelle [2] flowing gas

specifications but enhanced by the additional specification of a well-defined flow geometry,
known as the "impinging jet", and flow rate. [3] We used it to expose coupons of MP [3]
and ME [4] tape to variations of a Battelle Class II environment and found that some
commercial MP media is very corrosion resistant while commercial ME media is vulnerable
to corrosion on direct exposure. Numerical modeling of the flow has shown that, under
certain circumstances to be discussed herein, the system possesses the useful property of
uniform accessibility of the pollutants to the surface. In this paper, we report on the results

of this modeling and discuss the standardization of direct exposure testing to eliminate the
lab-to-lab variations that have been reported in the literature.

255



The fluid dynamics of the impinging jet

The impinging jet configuration, a variation of the stagnation point flow geometry, appears
in Fig. 1. The incoming gas stream flows through a nozzle oriented perpendicularly to a
nearby surface. The velocity profile of the jet changes from fully developed parabolic flow
to free jet flow in the potential core, beyond which the centerline velocity of the jet
decreases at a rate inversely proportional to the distance from the nozzle. The axial fluid

velocity approaches zero in the region near the stagnation point. The flow in the body of
the jet is axisymmetric, inviscid, irrotational, and the thickness of the boundary layer is
insensitive to radial position. The flow is inviscid in the body of the jet because the

vorticity is of the order of the inlet velocity divided by the radius of the jet, which is large
with respect to the vorticity of the fluid in the boundary layer that grows from the
stagnation point outward near the surface of impingement.

Humid,

polluted air

1 2R

_1-Nozzle

Sample

H_ stage

Figure 1. A schematic diagram of the impinging jet

Previous investigators have modeled the transport in the impinging jet reactor and
experimented with it. The theoretical investigations can be divided into those that assume a

uniform inlet flow and those that assume a well-developed parabolic flow. Homann [5]

solved the one dimensional equations under the assumption of uniform accessibility. Chin
and Tsang [6] surveyed the literature on the impinging jet and developed a semiempirical
solution of an isothermal convective diffusion model in the form of an asymptotic series to
give an estimate of the mass transfer rate for Schmidt number (Sc) > 0.7. Scholtz and

Trass [7], examining mass transfer in a laminar impinging jet with a parabolic velocity
profile at the inlet, measured velocity, pressure distributions, and the evaporation of
naphthalene in a jet of air flowing at nozzle Re in the range 375 to 1970. The results of the
experiments agreed satisfactorily with their analysis of the fluid flow and mass transfer

equations under the nozzle. The rate and radial distribution were insensitive to nozzle height
in the range 0.25 to 6 nozzle diameters. The mass transfer was uniform to the surface from

the stagnation point to one fifth of the nozzle radius. The dependence of the mass transfer

on radius from the axis was a strong function of nozzle height. For nozzle heights greater
than half a radius, the mass transfer rate was a maximum at the axis and decreased radially.
The mass transfer rate at the nozzle radius was approximately 80% of the rate at the
stagnation point for nozzle heights of greater than one half the nozzle radius. For nozzle
heights less than a third of the radius, the pattern was inverted; that is, the mass transfer
rate was a minimum at the axis and increased radially. Snyder et al. [8] modeled the flow
numerically and confirmed this inversion of the radial dependence of the mass transfer.
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We usedtheimpingingjet designin acceleratedcorrosiontestingof magneticmedia[3,4]
because of its simple construction and high mass transfer rates but were concerned about
the uniformity of the exposure. The inversion of the mass transfer rate dependence on the
nozzle height, noticed by Scholtz and Trass [7] and illustrated in Fig. 2, presented an
opportunity to improve the uniformity of the mass transfer to the surface under the jet, We
sought to determine the radial profile of the mass transfer flux for various values of H/R
between 0.3 and 0.5 in order to explore what happens when the profile changes from the

one having a maximum at the axis to the profile having a minimum at the axis. The results
of this modeling and their relation to the uniformity and rate of mass transfer of dilute
components from a flowing mixed gas to coupons in an impinging jet chamber are
presented in this contribution. The objective of the modeling was to determine conditions
under which the uniformity of mass transfer to coupons would be optimal.

The Numerical Model of the Impinging Jet

A diagram of the domain appears in Fig. 2. A carrier gas and a reactive minor component
enter the domain with a parabolic velocity profile and the flow emanates from a nozzle six
to seven radii from the inlet. The gas impinges on a surface located at various distances
from the nozzle and it exits along the open end of the domain. For the purposes of this
study, the concentration of the minor component vanishes at the impingement surface (i.e.
mass transfer control). This specification produces the maximum rate of delivery of the

reacting species to the surface. The width of the domain was two radii. Axial symmetry.in
the problem allowed two dimensional representation and sectioning of the domain.

Equations for the convective diffusion of mass and momentum in the impinging jet
geometry governed the transport in the domain [7]. The dilute solution approximation was
appropriate for this case. The boundary conditions were: (1) zero flux of mass and
momentum through the nozzle wail and the reactor wall connected to the nozzle; (2) zero
flux of momentum through the impingement surface; (3) finite concentration of the minor

component at the inlet and (4) zero concentration at the surface of impingement.

Inlet parabolicvelocity profile

1

0.5m

-9---0.08 m------'_

Figure 2. A schematic diagram of the domain of the numerical solution.

A diagram of the chamber used in the experiments [3,4] appears in Fig. 3.
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Figure 3. Detailed schematic of the impinging jet chamber
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The programfor the impingingjet reactorin this studysolvedthe governingequations
subjectto theboundaryconditionsusingafinite volumemethoddocumentedby Patanker
[9]. TheFLUENT softwarepackagewasusedto formulateandsolvetheappropriate
discretizationequationsfor the impingingjet model. Detailsaboutthegrid andthesolution
methodcanbe foundin Snyderet al. [8]. The physical constants and specifications used in

the simulation were the following:

Molecular diffusivity of the pollutant:

Volumetric flow rate of humid polluted air:

Density:
Viscosity:

Temperature:

1.5E-5 m2/s

2.67E-5 m3/s

1.13 kg/m 3
1.85E-5 kg/ms
303 K

These factors gave a Sc number of 1.09. This volumetric flow rate gave Re numbers of

82, 41, and 27 for the 1 inch, 2 inch and 3 inch tube diameters, respectively.

Results of the Numerical Modeling

The local mass transfer coefficient to the samples below the nozzle, in dimensionless form,

appears in Figures 4, 5, and 6 as a function of radial position for nozzle diameters of 1
inch, 2 inches, and 3 inches, respectively. The ordinate, expressed in physical properties,

is

sh k(0R)1,2
_e 1_2 _ D 21.t<v>

(1)

where

kR
Sh =

D

2R <v> I.t
Re-

P

[1
Sc =

pD

and k is the mass transfer coefficient; R is the nozzle radius; D is the binary diffusivity of

oxidant in the air; <v> is the average velocity in the nozzle; Ix is the viscosity; and p is the

density of the test gas. Thus the ordinate is proportional to the local mass transfer
coefficient, k, and is therefore proportional to the ability of the mixed flowing gas to deliver

the pollutant to a particular location.
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Figure 4. The dimensionless local mass transfer coefficient on the surface of
impingement as a function of radius from the axis of the 1 inch nozzle. In

the case of H/R = 0.35, the maximum nonuniformity is +/- 0.0085 or about
1% of the average value.
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Figure 5. The dimensionless local mass transfer coefficient on the surface of
impingement as a function of radius from the axis of the 2 inch nozzle. In

the case of I-I/R = 0.39, the maximum nonuniformity is +/- 0.012 or about
1.5% of the average value.
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Figure 6. The dimensionless local mass transfer coefficient on the surface of
impingement as a function of radius from the axis of the 3 inch nozzle. In
the case of I-I/R = 0.40, the maximum nonuniformity is +/- 0.018 or about

2% of the average value.

Note the resolution of the ordinates in Figures 4, 5, and 6. The maximum variation of the
mass transfer coefficient at the surface of impingement over the radius of the nozzle is +/-
1%, 1.5% and 2%, respectively, for the 1 inch, 2 inch, and 3 inch diameter nozzles. The
implication is that the delivery of pollutants to the surface of impingement is uniform to
within the quoted percentages under the assumption that all of the active species in the gas
phase that reach the surface are immediately and irreversibly consumed. The optimum
results for the three different nozzle sizes, plotted on a scale that reveals the essential
uniformity of the mass transfer coefficient over the radius of the nozzle, appear in Figure 7.

0.4

0.2

I I I I

................ ' "J'J ........... :;.. ..... r ........ ".,.1

1 inch
....... 2 inch
........... 3 inch

0 I I I ............ I

0 0.2 0.4 0.6 0.8 1
r/R

Figure 7. The uniformity of mass transfer to samples. Heights of the
nozzles above the sample stage: 1 inch: 0.177"; 2 inch: 0.390"; 3 inch:
0.600". The heights should be within +/- 0.010" of the indicated values.
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The domain and boundaries appearing in Figure 2 shows that the entire surface of
impingement below the nozzle is active from the axis to the radius of the chamber. In
practical situations, one places coupons only in the area of interest below the nozzle, but
this can lead to spurious effects for the samples at the outer edge because the pollutants can
diffuse upstream and increase the exposure of the outermost samples. This situation is
depicted in Fig. 8. The dashed line corresponds to the case where the outer boundary of
the sample region ends at the radius; the dark continuous line corresponds to the situation
when the entire surface is active or when a set of buffer samples is included outside the
radius of the nozzle.

Discussion

Given the above results and the work of Scholtz and Trass [7], one can express the
dimensionless mass transfer rate as

Sh = 0.82 Re0"5Sc 0"36 (2)

Rewriting equation (2) and multiplying by the concentration of oxidant, one can calculate

directly the mass transfer limited corrosion rate in }.tm per day.

r
-  064__

(3)

where

da
= corrosion rate

dt

<v> = average flow velocity in the nozzle
R = radius of the nozzle

P = atmospheric pressure, 1 atm
Xo = mole fraction of oxidizer in the system

Rgl = gas law constant
T= temperature
N = the number of media atoms corroding per molecule of oxidant

Pm = density of magnetic material

Mm = molecular mass of magnetic material

Equation (3) assumes that there is a primary oxidant that is transported by diffusion and
convection to the sample surface where it is adsorbed and reacts with unit probability.
Note that the density of the magnetic medium must be its effective density. For example,
ME films contain voids, formed during the deposition process, that reduce the saturation
magnetization relative to the bulk alloy [10].
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Figure 8. Dimensionless local mass transfer as a function of radial position
from the axis on the surface of impingement. When the entire surface
outside as well as inside the nozzle radius is active, the dependence is

identical to the performance when a buffer layer one coupon wide is
included is added to the samples. When no buffer layer is present, the mass
transfer rate increases strongly because of the availability of species to

diffuse upstream and react.

In general, the result of experiments of this type is not either the mass transfer limited
reaction rate or the reaction limited rate, but a mixed rate. The answer one wants from an

experiment such as this, for comparison to other media, is not the mixed-mode rate, but the
reaction-kinetics-limited rate that is obtained, in principle, when the flow velocity is
infinite. One can find this rate by assuming linearity of both the transport and reaction with
oxidant concentration, an assumption crucial to accelerated testing in any case, and by

expressing the kinetics as a series resistance problem. Analysis of this model reveals the
following relationship between the measured corrosion rate, the intrinsic reaction rate, and
the radius of the nozzle., i.e.

I l R3/2=_+C (4)

where _, is the reaction kinetics-limited rate of moment loss and C is a collection of

constants related to the mass transfer part of the problem. A plot of the left side of equation

(4) versus the 3/2 power of the radius should be a straight line having the reciprocal of the
desired quantity as the intercept at the ordinate.
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Conclusion: A Proposed Flow Geometry for Direct Exposure Testing

Using. the above results and analysis, we propose the following prescription as a means of
assurmg the reproducibility of direct exposure testing. Construct an isothermal chamber
having the capacity to hold a glass nozzle 1 inch, 2 inches, or 3 inches in diameter and 30

inches long. The nozzle should face a sample stage capable of holding samples at right
angles to the nozzle. The opening of the nozzle facing the samples should be flush with a
plane that extends to a radius of at least 3 inches. Provide a supply of humid polluted air to
the chamber at a total volumetric flow rate of 1600 sccm. All the other Battelle Class II

specifications remain the same. The nozzles should be suspended above the sample stage
by 0.177", 0.390", and 0.600" +/- 0.010" to assure that the delivery of pollutants to the
surface does not vary from axis to nozzle radius by more than approximately 2%. The
samples should be coplanar with the surface of impingement. We have found that coupons
5 mm square and attached by double stick tape to glass inserts in a plastic chip carder
matrix work very well. Coupons this size generally have sufficient magnetic moment to be
measured and a number of them can be exposed at once, particularly if the 3" nozzle is
used. The thickness of the glass inserts and tape can be matched to permit the sample
coupons to be flush with the impingement surface.

There are two main advantages and one disadvantage of this specification. First, the
proposed configuration eliminates ambiguity in the flow over the samples and therefore
promotes reproducibility. Second, the laminar flow pattern can be calculated and the mass
transfer coefficients deduced to determine the relation between the amount of pollutants
delivered and the rate of corrosion of the samples. For example, one draws very different
conclusions if the measured rate is much less than-, equal to-, or much greater than the rate
of supply of pollutants to the samples. The disadvantage of the proposed approach is that
the close proximity of different samples in the sample tray under the nozzle can affect the
results if the samples have very different susceptibilities to corrosion. For example, if one
sample is very reactive and it adjoins a relatively unreactive sample, the reactive samples
will "steal" reactant from the more noble sample and the result would be that the difference
between the two samples would be accentuated. If the precise corrosion rate of a particular
sample is desired, the best solution is to do preliminary comparison testing of mixed
sample types and then do final testing of important sample types separately. This problem
could also be alleviated by a higher volumetric flow rate of gas so that the mass transfer
boundary layer thickness over the samples was much less than the dimension of the
samples.
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Abstract

Optical disk-based information systems are being used in private industry and many Federal

Government agencies for on-line and long-term storage of large quantities of data. The

storage devices that are part of these systems are designed with powerful, but not unlimited,

media error correction capabilities. The integrity of data stored on optical disks does not only

depend on the life expectancy specification for the medium. Different factors, including

handling and storage conditions, may result in an increase of medium errors in size and

frequency. Monitoring the potential data degradation is crucial, especially for long term

applications. Efforts are being made by the Association for Information and Image

Management Technical Committee C21, Storage Devices and Applications, to specify

methods for monitoring and reporting to the user medium errors detected by the storage

device while writing, reading or verifying the data stored in that medium. The Computer

Systems laboratory (CSL) of the National Institute of Standards and Technology (NIST) has

a leadership role in the development of these standard techniques. In addition, CSL is

researching other data integrity issues, including the investigation of error-resilient

compression algorithms. NIST has conducted care and handling experiments on optical disk

media with the objective of identifying possible causes of degradation. NIST work in data

integrity and related standards activities is described.

Introduction

Many organizations are using optical disk-based systems for the storage and retrieval of large

sets of valuable information. One general indicator for long term storage of data is the optical

disk media life expectancy. For this indicator to be of value, a standard method to determine

life expectancy is essential. Extrapolated life expectancy values may vary greatly because they

depend on the test method used for calculating the quality parameter (e.g. the byte error rate),

the measurement approach (including areas on the disk tested, data patterns written, and

amount of data tested), the mathematical model used, and the criteria for data analysis

(including the statistical analysis used and the confidence levels), Podio [1].

Ifa standardized test were employed by all media manufacturers, media life expectancy could
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beagoodparameterto selectmediafor longterm applications. However, to determine a life

expectancy specification, tests are run with a small sample of disks from a population of

manufactured disks. In addition, media technological changes would require running life

expectancy tests almost continuously to test newcomers on the market, since the old data

obtained on previous life expectancy tests may not apply to new technology. In conclusion,

a life expectancy specification is useful only as a general indicator for media selection.
Individual disks will still fail at different times.

All storage devices are designed with powerful, but not unlimited, error correction

capabilities. Because of different factors which include handling and storage conditions, errors

may increase in size and frequency. If the level of errors increases beyond the maximum

capacity of the ECC (error correcting codes) in the device, data will be uncorrectable. By not

being informed of the level of error correction that is taking place in the optical disk device,

users learn about critical error events only when the data is already irretrievable. If these

types of critical errors occur on a specific unlinked data structure, this data structure may no

longer be recoverable but data degradation may not have caused extensive damage outside

the unlinked data structure. However, if data degradation at these critical levels of

unrecoverable errors occurs in any linked structure or with a compressed data entity,

substantial data losses may result.

Several approaches can be followed for improving data integrity. One approach is to monitor

data errors with time. Users can gather information to highlight trends in particular selected

disks or their entire data sets. This monitoring capability allows users to make decisions on

transferring data to new media in a timely and economic manner before data loss occurs.

Another method to increase data integrity is to use layered ECC. Although layered error

correction decreases the user data capacity, it adds error resilience.

Compressed data in the presence of errors is especially vulnerable to catastrophic data failure.

Woolley [2] emphasizes the importance of robust error control in data compression

applications. For compressed data, in addition to using media error monitoring and layered

ECC, there are other techniques to improve data integrity in the presence of errors: error

correction integrated with data compression Kobler [3], entity reduction and error-resilient

compression. NIST is currently investigating the error-resilience of these techniques.

Efforts to develop standard media error monitoring tools and techniques for optical disk

drives and NIST's involvement in the development of this standard are described. NIST

investigations on media error monitoring tools, data analysis statistical models for error

distribution, and media error visualization are also described.

Another aspect of data integrity research at NIST includes an experimental program for the

care and handling of optical disks. A series of experiments were performed using different

types of optical disks. The experiments included exposure to liquids and vapors, cleaning

agents, solvents, fire smoke, food substitutes, paint fumes and paint, temperature and

humidity cycles, heat and cold shocks, uniform pressure, static electricity, gamma rays, etc.
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A brief descriptionof this work isalsoincluded.

Standardsfor Media Error Monitoring and Reporting Techniques

In 1991, the Computer Systems Laboratory of NIST sponsored a workshop to identify the

state of the art on media error monitoring approaches for optical disks and to identify the

user's needs, Podio [4]. As a result of the workshop, a working group was formed to identify

media error monitoring techniques. The working group developed a set of procedures for

monitoring and reporting media error correction levels on optical disk devices. The results

of this activity are being used as a basis for formal standard work.

With NIST leadership, the Association for Information and Image Management (MIM)

Committee C21 (Storage Devices and Applications) is developing the American National

Standard ANSI/MIM MS59. ANSI/MIM MS59 specifies media error monitoring and

reporting techniques for the verification of information stored on optical digital data disks 1,

AIIM C21 [5].

Parallel efforts are taking place in developing an international standard under the auspices of

the International Standards Organization (ISO) Technical Committee TC 171, Micrographics

and Optical Memories for Document and Image Recording, Storage and Use. The current

content of the proposed ISO standard is based on ANSI/AIIM MS59.

ANSI/AIIM MS59 provides a toolkit of media error monitoring and reporting techniques, any

combination of which may be employed. The standard provides two levels of media error

monitoring and reporting techniques, a functional approach and an implementation of a

selected set of Small Computer Interface (SCSI-2) commands.

The high level approach (a set of functional commands) is independent of the host operating

system (e.g. DOS, Unix, OS/2, etc) and the interface that connects the optical disk device

with the host (e.g. SCSI-2, IPI, LAN, etc). This high level interface approach is media type

and size independent. That is, it can be used with systems that use WORM (write-once read

many), rewritable or partially read-only media and optical disk drives for different media sizes

from 90 mm to 356 mm media. The implementation of a selected set of SCSI-2 commands

enables media error monitoring and reporting techniques at the device level providing direct

communication with an optical disk drive that uses the SCSI-2 interface.

1

The U. S. National Archives and Records Administration (NARA) has recently published a Technical

Information paper NARA [6]. NARA's publication provides recommendations on long-term access strategies

for Federal Agencies using digital-imaging and optical digital disk storage systems. One of NARA's

recommendations on data integrity states that users should *require that equipment conform to the proposed
national standard ANSI/AIIM MS59".
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The mediaerror informationthat canbeobtainedusingthe tools specified in the standard
include:

A list of reallocated sectors.

Corrections that exceed some specified media error levels.

Warning on specified verify media error levels.

Total number of bytes in error, number of bytes in error per sector and maximum

number of bytes in error in any sector codeword.

The uncorrected or corrected sector content.

Errors encountered reading header information such as the sector address, sector

marks, and synchronization signals.

The maximum length of contiguous defective bytes.

From the user's perspective, the purpose of ANSI/AIIM MS59 is to allow users of the
standard:

To have a better understanding of the status of their data stored on optical disks.

To obtain media error information as directed by the system administrator.

To enable data recovery with tools of the desired level of sophistication.

To provide media error information allowing the user to make decisions about the

media at the present time, and also provide error information which will highlight

trends in particular selected disks or in their entire data sets.

To make decisions about how long the media can be used without an unacceptable
risk of data loss.

To develop more cost effective backup, recopying and data transfer policies.

The user or implementor of ANSI/AIIM MS 59 will be able to:

Format the optical digital data disks with or without certification.

Reailocate sectors when specified media error levels are exceeded.
Obtain information about all the reallocated sectors and/or a defect list of initial media

defects.

Set media error level values to obtain early warning information about the status of

the data and/or interrogate the drive to obtain the values of those set media error
levels.

The media error levels are what the optical disk drive will use for error recovery. If the ECC

level of correction exceeds one or more of the set levels and reallocation is enabled, the sector

that exceeded the media error level(s) is reallocated to a spare sector. Whether reallocation

is enabled or not, the optical disk drive reports to the host that a set level was exceeded,

indicating which one was exceeded, and whether or not the data was recovered.

The following are the media error levels specified in ANSI/AIIM MS59:
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Numberof bytesin errorpercodeword
Numberof bytesin errorpersector
Numberof badsectorIDs
Numberof missingresyncbytes(whenthedriveusesresyncbytes)

AIIM C21 is also developingan accompanyingANSI TechnicalReport, AIIM C21 [7]

describing guidelines for the use of the media error monitoring techniques documented in

ANSI/AIIM MS59. The current outline for the guidelines includes:

A description and use of the media error monitoring and reporting techniques

documented in ANSI/AIIM MS59.

Discussion of error management strategies.

Methods of visualization of media error information using the techniques specified in
MS59.

Methods to estimate the data integrity including:

- use of sampling methods

- use of baseline media error parameters and distributions
- use of statistical models

NIST Investigation of Media Error Monitoring Tools for Optical Disks and Media
Error Visualization

Concurrently with the standardization efforts, NIST has also been conducting laboratory

work in investigating media error monitoring and reporting (MEMR) techniques, statistical

models for error distribution, and methods for error data visualization.

The MEMR techniques are used in optical disk drives for the verification of information

stored on the optical disks. These techniques allow users to obtain timely information about

the status of their data. NIST has investigated some of the MEMR techniques available in

commercial drives, and has researched possible new implementations. All of this work has

contributed to the content of the proposed ANSI/AIIM MS59 standard and the parallel

proposed ISO standard.

NIST has also developed guidelines for the use of the MEMR tools. The guidelines include

procedures that end users or system integrators can use to monitor the status of! data stored

on optical disks. These MEMR techniques for optical disk drives may be the basis of similar

MEMR techniques for other types of high density/high capacity mass storage technologies,

such as magnetic media disk/tape drives, optical tape drives and devices based on new page-
oriented memories.

NIST has looked at statistical models for media error distributions on optical disks. One

model is the modified Gilbert model, Marchant [8]. This model is based on two different

classes of defects and has been found to give an excellent fit to defect statistics on media that
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usesthemagneto-opticalrecordingTakeda,Saito,andItao [9]. This model takes into account

modeling non random errors (long burst defects). The Gilbert model requires two byte error

rate (BER) values and two average burst lengths. One BER is derived from microscopic

defects, the other from larger media substrate damage. The model output is the burst-length

probability distribution.

A simpler statistical model has also been developed at NIST. This model is the basis for

predicting the maximum number of errors in a sector codeword. One version of this model

assumes a uniformly random binomial distribution of errors, and uses only one byte error rate

(BER) and the number of sector interleaves as input. It produces a baseline for comparison

at different times on the status of an optical disk every time the disk is tested. The output of

this model can provide a basis for comparison with reported disk error statistics so that the

user can identify abnormal changes in the media error distribution. Figure 1 shows the model

output, a distribution of bytes in error per codeword.
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Maximum Nmnber of Bytes hnError per Codeword per Sector

Figure 1. For this particular disk type, the sector data field, which includes the user data

bytes, the ECC bytes, and the CRC bytes, is divided into five codewords. The maximum

mtmber of bytes in error of the five codewords per sector is determined, and the probability

of occurrence of one, two or more bytes in error is plotted. The maximum number of errors

per codeword that can normally be corrected in drives that use this type of media is eight.

Depending on the different values of the expected or empirical BER, the model can also

indicate that the drive's maximum error correcting capabilities are being approached or

exceeded. The modified Gilbert model describes only error length distributions, but does not

make the connection to error correcting capabilities. This simpler model makes this link. It

uses the real disk data structure (sectors and interleaves) and assumes only a simple uniformly

random distribution of errors, such as binomial or Poisson.

Given a measured BER, the model can be used to generate a predicted distribution of the
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numberof bytesinerrorpercodeword.If thepredicteddistributionis not acceptable (number

of bytes in error in any codeword exceeds certain user established number), the user may

consider retiring the media at this point. If the predicted distribution is acceptable, the user

should determine the real distribution of the number of bytes in error per codeword (using a

ANSI/AIIM MS59 compliant drive or any other drive that provides this type of media error

information). If the measured distribution shows an excess in the number of bytes in error, the

user may consider retiring the disk. Because the model assumes a random distribution of

errors, if the predicted and measured distributions are significantly different, a non random

error distribution might be supected and the user may use other MEMR tools to investigate

the level and the distribution of these errors further.

NIST has also developed media error visualization tools for the byte-error statistics

retrieved via the media error reporting tools documented in the ANSI/AIIM MS59 standard.

The media error visualization tools include:

a. Line graphs depicting:

Sector reallocations over time.

Bad sector ID's over time.

Byte error rate over time.

Maximum bytes in error per codeword and per sector over time for a given disk as

shown in Figure 2.
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Figure 2. This fine graph shows how the maximum, or worst-case, number of bytes in error

per codeword may change over time fi_r a given disk. The normal ECC correction limit

capability is eight bytes per codeword.
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In Figure 2, the user-specified error level is set at a maximum of four bytes in error per

codeword.

Using ANSI/AIIM MS59 compliant drives the user can check the default level of bytes in

error per codeword that, when exceeded, would enable the reallocation of the sector. Using

this type of drive, the user can also change this error level.

b. Bar charts depicting:

Relative frequency of maximum bytes in error per codeword and per sector.

Maximum bytes in error per codeword per radial area of a disk.

Maximum bytes in error per codeword per band of tracks.

The bar chart in Figure 3 shows tha maximum number of bytes in error per codeword per

band of tracks for a given disk.

8

7

6

5

3

2

1

0

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Band of Tracks

Figure 3. The maximum number of bytes m error per codeword & shown in this chart in a

different way than in Fig71re 2. The disk has been divided into bands" of n tracks and the

maximum number of bytes m error per code word in shown for all the sectors within the

tracks specified in a particular band. Dividing the disk into bands of n tracks" enables

visualization of the entire disk from the tuner area to the outer area.

c. Three-dimensional histograms depicting:

Maximum bytes in error per sector over the disk.

Maximum bytes in error per codeword over the disk as shown in Figure 4 in a three-

dimensional histogram.
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The mediaerror informationconveyedin this Figuremaybe, in manycases,sufficientfor
mostusers.As in Figure3, thediskhasbeendividedintobandsof n numberof tracks(31
bandsin thisFigure).

W

t_ '1
2,

'-'_._ ___ _ _
r. t-. _ o9 v., Disk Sector

Band of Tracks o9

Figure 4. The maximum number of bytes 01 error per codeword over the disk is shown in this

Figure using a three-dimensional representation. The maximum number of bytes in error

per codeword is shown for all the sectors within the tracks ,specified in a particular band.

Only one band shows sectors that have codewords with more than one byte in error. The

ECC correction capability for drives compatible with this type of disk is eight bytes in error

per codeword. The Figure shows a fairly healthy disk.

By using ANSI/AIIM MS59 compliant drives or other drives that provide similar media error

information, the user can typically obtain from the drive information on media errors with the

desired level of detail and sophistication.

When the user wants to analyze media errors in specific disks, media error visualization charts

can be used. However, when users want to apply media error monitoring tools to a large

number of disks, plotting error distributions or other statistics might be impractical. In this

case, the user should access the required information numerically and take the appropriate

action. For example, if the users set the media error levels, they may decide to transfer data

to another disk when these levels are exceeded. More information about these procedures or

how to use the visualization tools is provided in AIIM C21 [5] and [7].
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Care and Handling Experiments for Optical Digital Data Disks

NIST has conducted care and handling experiments with the objective of identifying possible

causes of data degradation in optical disk media. In order to conduct these experiments NIST

developed optical disk media measurement systems capable of determining data degradation

parameters such as the byte error rate, and error distributions. Figure 4 was based on one of

these error distributions. A measurement system for mechanical characteristics of optical disk

media was developed by Nevenzel and Voogel [ 10].

Optical disks may deteriorate if subjected to some unusual conditions such as extreme

temperature and humidity, temperature and humidity cycles, and high energy radiation. Some

office cleaning substances and other components like tobacco smoke, liquids and food may

also produce data degradation. Such degradation effects were investigated through care and

handling experiments. The approach that was followed consisted of writing a selected number

of sectors of the disks and reading them back checking the bytes in error and the error

distribution. The information that is derived is the byte error rate (BER), which gives an

average measure of the number of bytes in error, the defect distributions, and the location of

burst errors. Some mechanical measurements were also performed. For CD media testing,

which included CD-ROMs and CD-R's (CD recordable media), a commercially available

tester was used. NIST is currently analyzing the test results.

The experiments included:

Cleaning agents immersion tests and vapor and gas exposure.

Fire smoke exposure and exposure to chemicals used in fire extinguishers.

Exposure to food substitutes.

Exposure to paint and wax fumes.

Temperature and humidity cycles; cold and heat shocks.

Mechanical experiments such as impact and uniform pressure.

Human interaction such as scratches, permanent inks, hand creams and bending

experiments.

Electromagnetic exposure such as magnetic fields, gamma-rays, X-rays and

electrostatic discharge and sun light.

Exposure to possible harmful liquids such as gasoline and diesel.

Read, write and erase cycles.

A complete description of the measurement procedures, the experiments conducted and the

test results are to be included in a NIST report that is currently being prepared for

publication.

Current and Future Plans

NIST will continue to investigate techniques to improve data integrity in the presence of



mediaerrors.Work will continuein thedevelopmentandanalysisof statisticalmodelsfor
errordistributionandvisualizationtools.Thework will alsoincludetheinvestigationof data
integrityof storagemediausinglayeredECC,andtheinvestigationof emergingtechniques
for datacompressionincludingentity reductionanderror-resilientcompression.In addition,
thereis interestfrombothusersandindustryinextendingthework doneondataintegrityfor
opticaldisksto otheremergingstoragedevicetechnologies.

Conclusions

A life expectancy specification for optical disks (and other types of storage media) is useful

only as a general indicator for media selection. But it cannot be the only indicator for assuring

data integrity in optical disks. Individual disks may still fail at different periods of time. Work

on standardizing media error monitoring and reporting techniques for the verification of

information stored on optical disks systems is ongoing. These techniques provide users with

a better understanding of the status of the data stored on optical disks. Users can then make

decisions about the media at the present time, identify trends and develop more cost-effective

backup, recopying and data transfer policies. Without access to media error information, the

level of media errors may increase beyond the maximum capacity of the error correcting

codes in the device. In this case, data will be uncorrectable.

The level of errors may increase because of factors such as improper handling or storage

conditions. Understanding the data integrity of data structures on a disks is important.

Compressed data, in the presence of uncorrectable errors, is especially vulnerable to

catastrophic data failure. Error-resilient algorithms and other techniques such as layered ECC

may increase the chances of data recovery in the presence of uncorrectable media errors. The

need to investigate media error monitoring and reporting techniques to verify data integrity

on optical disks and other emerging storage media technologies is apparent. Investigation of

error-resilient compression techniques is also needed.

Acknowledgements

The work described in this paper is based on the efforts of several people at NIST. I want to

acknowledge my colleagues for their input, support and work in this area. In particular, I

want to acknowledge the following individuals: Sandra Woolley and Thierry Gouverneur for

their work in media error monitoring, data visualization and sampling plans, Sam Silberstein

for the development of a statistical model for error distributions, and Stefan Leigh, James

Filliben, and other personnel from the Statistical Engineering Division of the Computing and

Applied Mathematics Laboratory of NIST for their useful advise and cooperation. Many

individuals participated in the care and handling experiments and I want to acknowledge their

participation and support in that work. I also want to acknowledge the members of AIIM C21

for their contribution to the ANSI/AIIM MS59 standard and the guidelines. Special thanks

are due to Charles Obermeyer from the U.S. National Archives and Records Administration

(NARA) and David Patton from IBM, Tucson, AZ. The work described in this paper is

275



carriedout at NIST, under Interagency agreements with several U.S. Federal Government

agencies including the U.S. National Archives and Records Administration, the Social

Security Administration and the Federal Bureau of Investigation.

References

[1] Femando L. Podio, "Development of a Testing Methodology to Predict Optical Disk

Life Expectancy Values", NIST Special Publication 500-200, December 1991.

[2] Sandra I. Woolley, "The Importance of Robust Error Control in Data Compression

Applications", Third NASA Goddard Conference on Mass Storage Systems and

Technologies, 1993.

[3] Ben Kobler, "Techniques for Containing Error Propagation in

Compression/Decompression Schemes, Space and Earth Science Data Compression

Workshop, 1991.

[4] Femando L. Podio, "Monitoring and Reporting Techniques for Error Rate and Error

Distribution in Optical Disk Systems", Results of a Workshop, NIST Special

Publication 500-198, August 1991.

[5] AIIM Technical Committee C21, Storage Devices and Applications; Proposed ANSI

Standard ANSI/AIIM MS59: "Media Error Monitoring and Reporting techniques for

Verification of the Information Stored on Optical Digital Data Disks", Fifth Draft,

November 1994.

[6] The National Archives and Records Administration, "Digital-Imaging and Optical

Digital Data Disk Storage Systems, Long-Term Access Strategies for Federal

Agencies", Technical Information Paper No. 12, July 1994.

[7] AIIM Technical Committee C21, Storage Devices and Applications; Proposed ANSI

Technical Report ANSI/AIIM TR39: Guidelines for the Use of Media Error

Monitoring and Reporting techniques for Verification of the Information Stored on

Optical Digital Data Disks", Second Draft, November 1994.

[8] Alan B. Marchant, "Optical Recording, A Technical Overview", Addison-Wesley

Publishing Company, 1990.

[9] Takeda, T., M. Saito, and K.Itao,"System Design of 90 mm Optical Microdisk

Subsystem", SPIE Proceddings, 899, 16, 1988.

[lO] Gerhard Nevenzel, Martin Voogel; "Mechanical Deformation Measurements for

Optical Data Disks", NIST IR 5208, February 1993.

276



N95-24131

Optimizing Tertiary Storage Organization and Access

for Spatio-Temporal Datasets

Ling Tony Chen, Doron Rotem, Arle Shoshanl
Mail Stop 50B/3238

Lawrence Berkeley Laboratory
Berkeley, CA 94720

Tel: (510) 486-7160, 486-5830, 486-5171
Fax: (510) 486-4004

Email: LTChen@lbl.gov; D Rotem@lbl.gov; shoshani@lbl.gov

Bob Drach, Steve Louis
L-264; L-561

Lawrence Livermore National Laboratory
Livermore, CA 94550

Tel: (510)422-6512; 422-1550
Fax: (510)422-7675; 422-0435

Email: drach@cricket.llnl.gov; louisst@nerse.gov

3-B2_.,

/,

Meridith Keating
Lawrence Livermore National Laboratory

Livermore, CA 94550
Email: mkeating@llnl.gov

Abstract

We address in this paper data management techniques for efficiently retrieving requested
subsets of large datasets stored on mass storage devices. This problem represents a major
bottleneck that can negate the benefits of fast networks, because the time to access a subset
from a large dataset stored on a mass storage system is much greater that the time to transmit
that subset over a network. This paper focuses on very large spatial and temporal datasets

generated by simulation programs in the area of climate modeling, but the techniques
developed can be applied to other applications that deal with large multidimensional datasets.
The main requirement we have addressed is the efficient access of subsets of information
contained within much larger datasets, for the purpose of analysis and interactive
visualization. We have developed data partitioning techniques that partition datasets into
"clusters" based on analysis of data access patterns and storage device characteristics. The

goal is to minimize the number of clusters read from mass storage systems when subsets are
requested. We emphasize in this paper proposed enhancements to current storage server
protocols to permit control over physical placement of data on storage devices. We also
discuss in some detail the aspects of the interface between the application programs and the
mass storage system, as well as a workbench to help scientists to design the best re-

organization of a dataset for anticipated access patterns.

I. Introduction

Large-scale scientific simulations, experiments, and observational projects, g.enerate large
multidimensional datasets and then store them temporarily or permanently m an archival

mass storage system (MSS) until it is required to retrieve them for analysis or visualization.
For example, a single dataset (usually a collection of time-history output) from a climate
model simulation may produce from one to twenty gigabytes of data. Typically, this dataset
is stored on up to one hundred magnetic tapes, cartridges, or optical disks. These kinds of
tertiary devices (i.e., one level below magnetic disk), even if robotically controlled, are

relatively slow. Taking into account the time it takes to load, search, read, rewind, and
unload a large number oof cartridges, it can take many hours to retrieve a subset of interest

from a large dataset.
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An important aspectof a scientific investigationis to efficiently accessthe relevant
subsetsof informationcontainedwithin muchlargerdatasetsfor analysisand interactive
visualization. Naturally, the data accessdependson the method used for the initial
storageof this dataset.Becausea datasetis typically storedon tertiarystoragesystemsin
the orderit is producedandnot by theorderin which it will be retrieved,a largeportion
of the datasetneedsto be readin orderto extractthe desiredsubset. This leadsto long
delays(30minutesto severalhoursis common)dependingon thesizeof thedataset,the
speedof thedeviceused,andtheusageloadon themassstoragesystem.

The main conceptwe pursuehereis that datasets should be organized on tertiary storage

reflecting the way they are going to be accessed (i.e. anticipated queries) rather than the

way they were generated or collected. We show that in order to have an effective use of

the tertiary storage we need to enhance current storage server protocols to permit control

over physical placement of data on the storage devices. In addition, these protocols need

to be enhanced to support multiple file reads in a single request. We emphasize in this

paper the aspects of the storage server interfaces and protocols, as well as simulation and

experimental results of the effects of dataset organization for anticipated access patterns.

In order to have a practical and realistic environment, we choose to focus on developing

efficient storage and retrieval of climate modeling data generated by the Program for

Climate Model Diagnosis and Intercomparison (PCMDI). PCMDI was established at

Lawrence Livermore National Laboratory (LLNL) to mount a sustained program of
analysis and experimentation with climate models, in cooperation with the international

climate modeling community [1]. To date, PCMDI has generated over one terabyte of

data, mainly consisting of very large, spatio-temporal, multidimensional data arrays.

A similar situation exists with many scientific application areas. For example, the Earth

Observing System (EOS) currently being developed by NASA [2], is expected to produce

very large datasets (100s of gigabytes each). The total amount of data that will be

generated is expected to reach several petabytes, and thus will reside mostly on tertiary

storage devices. Such datasets are usually abstracted into so called "browse sets" that are

small enough to be stored on disk (using coarser granularity and/or summarization, such

as monthly averages). Users typically explore the browse sets at first, and eventually

focus on a subset of the dataset they are interested in. We address here this last step of

extracting the desired subsets from datasets that are large enough to be typically stored on

tape.

Future hardware technology developments will certainly help the situation. Data transfer

rates are likely to increase by as much as an order of magnitude as will tape and cartridge

capacities. However, new supercomputers and massively parallel processor technologies

will outstrip this capacity by allowing scientists to calculate ever finer resolutions and

more time steps, and thus generating much more data. Because most of the data generated

by models and experiments will still be required to reside on tertiary devices, and because

it will usually be the case that only a subset of that data is of immediate interest, effective

management of very large scientific datasets will be an ongoing concern. However, there

is an additional benefit to our approach. Even if we accept the premise that users will be
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tolerantof long delays(i.e. placingordersthattakeseveralhoursor overnightto fill), it is
still in the best interestof massstoragefacilities to be able to processrequestsmore
efficiently, by avoiding to read datanot needed. This translatesinto savingson the
hardwareneededto supportanaverageaccessload.

It is not realistic to expect commercialdatabasesystemsto add efficient support for
varioustypesof tertiary storagesoon. But evenif suchcapabilitiesexisted,we advocate
anapproachthatthemassstorageserviceshouldbeoutsidethedatamanagementsystem,
and that various software systems(including future data managementsystems)will
interfaceto this servicethrougha standardizedprotocol. The IEEE is actively pursuing
suchstandardprotocols [3] and manycommerciallyavailablestoragesystemvendors
havestatedthat they will help developandsupportthis standardseffort for a variety of
tertiarydevices.Anotheradvantageto our approachis thatexistingsoftwareapplications,
suchas analysisand visualizationsoftware,can interface directly to the massstorage
service. For efficiency reasons,manyapplicationsusespecializedinternal data formats
andoftenpreferto interfaceto filesdirectly ratherthanuseadatamanagementsystem.

In section 2, we describein somedetail our approachand the componentsmodules
necessaryto supportit. Section3 describesthe storagesysteminterfacedesignfor both
thewrite andthereadprocesses.Section4 containssimulationandexperimentalresults,
andsection5 describesa workbenchthatwasdesignedto help scientistsin selectingthe
organizationof datasetsthatbestsuitstheiranticipatedaccesspatterns.

2. Technical Approach

The goal is to read as little data as possible from the MSS in order to satisfy the subset

request. For example, for geological fault studies the most likely access pattern is

regional (in terms of spatial coordinates) over extended time periods. For this application,

the dataset should be partitioned and stored as regional "bins" or "clusters" over time, as

opposed to the traditional way of storing data globally for one time slice. In general, the

portions of a dataset that satisfy a query may be scattered over different parts of the

dataset, or even on multiple volumes. For example, typical climate simulation programs

generate multiple files, each for a period of 5 days for all variables of the dataset. Thus,

for a query that requests a single variable (say "precipitation") for a specific month at

ground level, the relevant parts of the dataset reside on 6 files (each for a 5 day period).

These files may be stored on multiple volumes. Further, only a subset of each file is

needed since we are only interested in a single variable and only at ground level. If we

collected all the parts relevant to a query and put them into a single file, then we would

have the ideal cluster for that query. Of course, the problem is one of striking a balance

between the requirements of all queries, and designing clusters that will be as close as

possible to the ideal cluster of each query. This idea is a common methodology used in

data management systems (called "physical database design"). However, such methods

have not been applied or investigated much in the context of mass storage systems.

In the past two years we have investigated and developed partitioning algorithms for a

specific application: simulation data generated by climate models. In that context, we
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haveidentified specificaccesspatternswhichwecharacterizedasquerytypes. In general,
the problemis oneof finding thebestcompromisein how to storethedatafor conflicting
accesspatterns.We haveshownthatalthoughthegeneralproblemis NP-complete,it is
possible to develop effective approximate solutions using dynamic programming
techniques [4]. We only discussed below the methodology of our approach and the

software modules needed to support our approach. The details of the algorithms used are
discussed in [4].

2.1 Functional description of the components

We need to address the components necessary for both writing the reorganized dataset and

reading the desired subset. The first component, which we call the "data allocation and

storage management" is responsible for determining how to reorganize a dataset into

multiple "clusters", and for writing the clusters into the mass storage system in the desired

order. The parts of the dataset that go into a single cluster may be originally stored in a

single file or in multiple files. The second component, which we call "data assembly and

access management" is responsible for accessing the clusters that contain relevant data for

the requested subset, and for assembling the desired subset from these clusters. One

consequence of this component is that analysis and visualization programs are handed the

desired subset, and no longer need to perform the extraction of the subset from the file.

The details of the two components are shown in Figures 1 and 2.

On the left of Figure 1, the Data Allocation Analyzer is shown. It accepts specifications

of access patterns for analysis and visualization programs, and parameters describing the

archival storage device characteristics. This module selects an optimal solution for a

given dataset and produces an Allocation Directory that describes how the

multidimensional dataset should be partitioned and stored.
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Figure 1: Data allocation and storage management details

The Allocation Directory is used by the File Partitioning Module. This module accepts a

multidimensional dataset, and reorganizes it into "clusters" that may be stored in

consecutive archival storage allocation spaces by the mass storage system. Each cluster is

then stored as a single file, which in most tertiary storage devices today is the basic unit of

retrieval (that is, partial file reads are not possible). The resulting clusters are passed on

to the Storage Manager Write Process. In order for the Storage Manager Write Process to

have control over the physical placement of clusters on the mass storage system,

enhancements to the protocol that defines the interface to the archival mass storage system

were developed. Unlike most current implementations that do not permit control over the

direct physical placement of data on archival storage, the enhanced protocol permits

forcing of "clusters" to be placed adjacent to each other so that reading adjacent "clusters"

can be handled more efficiently. Accordingly, the software implementing the mass
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storage system's bitfile server and storage servers, needs to be enhanced as well.

details on the modified protocols are given Section 3.

In Figure 2, we show the details of reading subsets from the mass storage system.

More

f
Archival Mass Storage System

Enhanced Read Server
Interface and Protocols j

The storage manager conlrols
the access to data "clusters"

using the allocation directory

and sends them through the

assembly process when
requested

Storage Manager }_(Read Process)

1
VisualiTation/Analysis System

Data

Requests

Figure 2: Data assembly and access management details

Upon request for a data subset, the Storage Manager Read Process uses the Allocation

Directory to determine the "clusters" that need to be retrieved. Thus, reading of large files

for each subset can be avoided. Here again, the bitfile server and storage server of the

mass storage system needs to be extended to support enhanced read protocols (see Section

3 for details). Once the clusters are read from the mass storage system, they are passed on

to the Subset Assembly Module. Ideally, the requested data subset resides in a single

cluster (especially for queries that have been favored by the partitioning algorithm). But,

in general, multiple clusters will have to be retrieved to satisfy a subset request, where

only part of each cluster may be needed. Still, the total amount of data read will typically

be much smaller than the entire dataset. The Subset Assembly Module is responsible for
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acceptingmultipleclusters,selectingtheappropriatepartsfrom each,assemblingtheparts
selectedinto a singlemultidimensionalsubset,andpassingthe result to the analysisand
visualizationprograms.

2.3 Characterization of datasets ,queries, and hardware

The typical dataset in climate modeling applications is not composed of just a single

multidimensional file for several variables, but rather a collection of multidimensional

files, each for a subset of the variables. The granularity of the spatial and temporal

dimensions are common to all variables, but some variables may contain only a subset of

these dimensions. For example, a typical dataset may have 192 points on the X

dimension, 96 points on the Y dimension, 19 points on the Z dimension (i.e. 19

elevations), and 1488 points on the T (time) dimension covering one year ((12 months) x

(31 days/month) x (4 samples/day)). This dataset may contain a "temperature" variable

for all X,Y,Z,T and a "precipitation" variable for X,Y,T only. For the "precipitation"

variable, the Z dimension is implicitly defined at the ground level. A typical dataset may

have close to a hundred of such variables, each using a different subset of all the

dimensions. Thus, the characterization of a dataset involves a description of each the

above dimensions and for each variable the dimensions that apply to it.

The characterization of queries required extensive interaction with the scientists using the

data. After studying the information provided by scientists, we have chosen to

characterize "query types", rather than single queries. A query type is a description for a

collection of queries that can be described jointly. For example, a typical query type

might be "all queries that request all X,Y (spatial) points, for a particular Z (height) one

month at a time over some fixed subset of the variables". Thus, assuming that the dataset

covers 2 years and 20 height levels, the above query type represents a set of 480 queries

(24 months X 20 heights). It was determined that providing query types is more natural

for these applications. Further, the query type captures a large number of example

queries, and thus permits better analysis of usage patterns.

Each query type is defined as a request for a multidimensional subset of a set of variables,

where the multidimensional subset must be the same for all variables of the query type. A

query type is defined by selecting One of the following 4 parameters for each dimension:

1) All: if the entire dimension is requested by the query type.

2) One(coordinate): if exactly one point (the coordinate element) of the dimension is

requested.

3) Any: if one value along the dimension is requested for this query type. Note that it is

assumed that any one of the values within this dimension is equally likely to occur.

4) Range(low,high): if a contiguous range that starts at low and ends at high of the

dimension is requested.
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All variables in our application are defined over a subsetof the following seven
dimensions:X(longitude), Y(latitude), Z(height),Sample,Day, Month, Year. Note that
theTime dimensionhasbeensplit into 4 dimensionsthatspecifythesamplewithin a day,
the daywithin a month,the monthwithin a year,andthe year. The splitting of the time
dimensionmakesit possibleto specify "strides"in the time domain, suchas "summer
monthsof eachyear", the"first dayof eachmonth",etc. Somevariablesmaynot haveall
dimensionsdefined. For example,"precipitation"is definedatgroundlevel only, andhas
noheight(Z) dimension.

It hasbeendeterminedthat for our applicationthis query type definition encompasses
almostall possiblequeriesthatuserswouldwant in this applicationarea. It wasobserved
(andverified with climatologists)thattheOneandRangeparametersarenot usedasoften
astheAll andAny parameters.An exampleof aquerytypespecificationis givenbelow:

Temperature,Pressure:All X, All Y, One(Z,0),All S,All D, Range(M,6-8),Any Y

This query type specifiesthat temperaturesand pressuresare requestedover all X,Y
positions,for Height0 (groundlevel),but only for samplepointsanddaysin the summer
monthsfor a singleyear. A query belongingto this query typecanbe specifiedfor any
year. Thus, if the datasetis over20years,thisquerytyperepresents20 possiblequeries,
eachbeinga subsetof themultidimensionalspace.

Thecharacterizationof the tertiarystoragedevicesshouldaccommodatevarioustypesof
devices. We identified the following 5 parametersthat areneededto characterizeany
tertiarystoragedevicefor thepurposeof determiningtheoptimalpartition:

1)M (MegaBytes):thecapacityof eachtape.

2) R (MB/second): sustainedtransfer rate, excluding any overheadfor starting and
stopping.

3) Ts(x) (seconds):fast forwardseekfunction. A mappingfunctionbetweenthedistance
of theforward seekandthetimeit takes. For example,if it takes10secondsto initialize
aseek,and20MB/sthereafter,theseekfunctionis: Ts(x) = 10+ (x/20). In caseswhereit
is difficult to determinetheconstantvalue,theseekfunction is simply x divided by the
seekspeed.

4) Tm (seconds): mount time. The time it takes to change a cartridge up to the point

where we can read the first byte out of the new cartridge. This time includes: unload

previous tape, eject previous tape, robot time to place previous tape back on shelf, robot

time to retrieve new tape from shelf, mount new tape, setup tape to be ready to read the

first byte.

5) FO (bytes): extra File Overhead. This is the overhead (in bytes) involved in breaking

one long file into two shorter files. If retrieving the long file takes T2 seconds, and
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retrievingthetwo consecutiveshorterfiles requiresT1 seconds,thenthefile overheadFO
= (T1-T2)*R, whereR is thetransferratedefinedin point2 above.

This five parametermodelhasprovento besufficient to describemost removablemedia
systemssuchasrobotic tape librariesor optical disk juke boxes. In the latter case,we
adjusttheseektimecomponentof ourcostfunctionto zeroasit is negligiblecomparedto
thetime it takesto dismountandmounta newplatter. Measurementsof theseparameters
for two robotic tapesystemsaregivenin thenextsection.

3. The Storage System Interface Design

The developmental and operational site for our work is the National Storage Laboratory

(NSL), an industry-led collaborative project [5] housed in the National Energy Research

Supercomputer Center (NERSC) at LLNL. The system integrator for the National

Storage Laboratory is the IBM Federal Sector Division in Houston. Many aspects of our

work complement the goals of the National Storage Laboratory.

The NSL provides two important functions: a site where experiments can be performed

with a variety of storage devices, and facilities necessary to support storage and access of

partitioned datasets. The first mass storage software developed at the NSL was an

enhanced version of UniTree, a system originally written in the 1980s at LLNL and later

commercially marketed by DISCOS, OpenVision, and T-mass. The enhanced NSL

system, called NSL-UniTree, features network-attached storage, dynamic storage

hierarchies, layered access to storage-system services, and new storage-system

management capabilities [6]. A commercial version of NSL-UniTree was announced late

in 1992 by IBM U.S. Federal. Work on a new storage software system, called the High

Performance Storage System (HPSS) [7], is also in progress at the NSL. A central

technical goal of the HPSS effort is to move large data files at high speed, using parallel

I/O between storage devices and massively parallel computers. HPSS also seeks to

increase the efficiency of scientific and commercial data management applications by

providing an extensible set of service quality attributes that can be applied to storage

resources and devices.

NSL-UniTree manages data using a typical hierarchical file system approach compatible

with widely used operating systems such as UNIX. Access to the file system is provided

via standard FTP and NFS file transfer protocols, or via a file-oriented client application

programming interface (API). The initial interfaces developed for HPSS also support
FTP, NFS, and a Client API. However, large scientific datasets are more efficiently

viewed as a collection of related objects, rather than as a single large file or multiple

independent files. To provide better access to such datasets, we have developed a

specification for a more suitable interface between mass storage systems and application

software to provide better control over data storage organization and placement for data

management clients, such as the data partitioner and subset assembler discussed here.

Though modifications to existing interfaces will also be required for HPSS, these will be

much smaller in scope because of the system's better ability to classify data by service

quality.
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3.1 The "write process"

Enhancements necessary to support this work were designed for an experimental version

of NSL-UniTree. For the Storage Manager Write Module to provide new attributes related

to physical placement of clusters on the mass storage system, modifications to the NSL-

UniTree file transfer protocols were developed. Unlike most current implementations that

do not permit control over the direct physical placement of data on archival storage, the

modified protocol provides a space allocation scheme for storing related data "clusters"

and the piece-wise writing and reading of these "clusters".

We designed a functional interface between the data partitioning engine and the mass

storage system that provides the ability to control allocation of space and physical

placement of data. The approach taken is to define several "Class of Service" (COS)

attributes associated with clusters and cluster sets and provide them to the storage system
via a modified FTP interface. These cluster-related COS attributes consist of:

1) a cluster set ID.

2) a cluster sequence number.

3) a frequency of use parameter.

4) a boundary break efficiency.

The cluster sequence number identifies the linear relationship between the clusters, and in

effect tells the storage system the desired order for storing the clusters. The frequency of

use parameter indicates the desirability of storing a cluster close to the beginning of a tape

(or to a suitable dismount area) to avoid seek overhead. The boundary break efficiency is

a measure of how desirable it is that a cluster stays adjacent to its predecessor. This

attribute is used to determine whether separation of two clusters across tape volumes
should be avoided if possible.

The COS attributes for a set of clusters are provided to the storage system prior to

delivery of the individual data clusters. In reality, they are treated as the initial cluster in a

set. This permits the storage system to assign the the rest of the clusters to tape volumes

for the desired tertiary storage device. We call an ordered collection of clusters assigned

to a single physical volume a "bundle". Thus, the last step of the partitioning process, (i.e.

the bundling of clusters such that a bundle can fit on one physical volume), is done by the

storage system. This was considered necessary for situations where precise storage system

parameters may not be known to the partitioning engine. In addition, this provides the

storage system management with an ability to override the partitioning engine's decisions

in order to prevent storage system overload or wasted space on physical volumes.

The interface design for NSL-UniTree is shown in Figure 3. As can be seen, this

mechanism allows the partitioning engine to determine what it perceives to be optimal

data layout for a given device destination. However, it gives final control to the storage

system. Data is transferred to the storage system in cluster sets with the COS attributes

sent as the first cluster. There is no strict requirement that all clusters be contained within
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a clusterset,but a containmentrelationshipis necessaryif thebenefitsof dataassociation
are to be realized.Clustersthat areprovidedto thestoragesystemindependentlywill be
storedindividually (i.e., asnormalfiles).

So asnot to constrainthepartitioningengineunnecessarily,no limits on cluster set size
havebeenestablished.This, however,meansthat a clusterset might be larger than the
availablestoragesystemdiskcache.To preventcacheoverflow, theclustersareorganized
into setswhosesizesaremanageableby thestoragesystem.

Oncetheclustersetattributesareavailablein thestoragesystem,the bundlingfunction is
called to assignclustersinto bundlesfor internaluseby the storagesystem'smigration
process.The migrationserverbuildsa bundletableanditerativelyexaminesthat tableto
confirm existenceof completebundles.To provide the necessaryinter-clustercohesion,
bundlesaremigratedto tertiarystoragelevelsonly whencomplete.Note thatbundlesmay
not necessarilyrepresentanentireclusterset.This dependson the storagecharacteristics
of thetargetedtertiaryvolume.

To ensureclustersarestoredwithout unnecessaryvolumebreaks(which would result in
an additionalmediamountpenaltyfor the readingprocess),the migrationserverchecks
destination volume space availability prior to actual bundle migration. If there is
insufficient space to store the entire bundle on the destination volume, the bundle
migration will be deferred for a finite period that can be set by storage system
managementpolicy. The idea behindthis deferral is to allow non-bundledfiles to be
migratedfirst in thehopethatthisresultsin themountingof a new (i.e., empty) volume.
Storagesystemmanagementcanoverridedeferralin situationswherethe system'scache
spaceis in dangerof exhaustion.In somestoragesystems,a full disk cacheis a fatal
condition.

3.2 The "read process"

We wish to support an object view for application programs where the objects are

multidimensional datasets and requests can be made for subsets of these datasets for a

single variable at a time. The function of the "subset assembler" is to take such a request

from the application, figure out what clusters to request from the mass storage system (if

more than one is needed to satisfy the request), and assemble the relevant parts of each

cluster into a single multidimensional file to be returned to the application. Consequently,

the application programs do not need tp deal with the data assembling details.
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Figure 3: NSL-UniTree enhancement implementation

One of the more difficult tasks that must be accomplished to achieve the subset assembly

is the selection of relevant parts from each cluster and the transposition of the dimensions

for those parts into the order desired by the application. We decided to take advantage of

existing software to perform this function. Currently, the climate modeling files are stored

in DRS format [9]. Each file is linearized on the dimensions, and there is a description file

associated with each data file. A DRS library exists that performs selection of a part of a

multidimensional file, transposing it as desired. The DRS library tries to allocate adequate

memory to perform this function in memory. However, when the file is too large to fit in

memory, a buffer management algorithm is used to optimize the use of available buffers

for files residing on disk. One of the advantages of dealing with clusters, which are
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relatively small files, is that it is more likely that enough memory can be allocated for

these files, and thus the selection and transposition operations can run efficiently.

The Storage Manager Read Module supports efficient reading of clusters. The desired

interface to the mass storage system for the read process is one which supports a single

request for multiple files corresponding to the set of clusters that the subset assembler

needs. When only a single cluster is needed to satisfy the subset request, the read module

needs to mount the proper volume, position to the cluster and read only that cluster. When

multiple clusters are needed to satisfy a subset request, the read module needs to ensure

reading of clusters in such a way that no unnecessary rewind of the volume take place.

Thus, the storage system management should treat this request as a request for an

unordered set of files; that is, disregard the specific order that the files were mentioned in

the request. It should read the files in the order that is internally most efficient, depending
on what volumes are mounted at the time of the request and the order of files on the

volume. Abilities to support this type of optimization are supported in most modern

storage systems, including NSL-UniTree. This capability was recently tested at the NSL

with an Ampex DST robotic tape system. We make use of the DRS library and the NSL-

UniTree storage management systems as shown in Figure 4.

As can be seen from Figure 4, the subset assembler accepts a request from the application

program using a specially designed API language. This request typically consists of the

name of a dataset, a variable, and range specifications for each of the dimensions that the

variable is defined on. The subset assembler consults the Allocation Directory, and

identifies which clusters are needed to satisfy the request. It then issues a request to NSL-

Unitree to stage the files representing these clusters into the cache.
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At this point the assembler does not know in which order files (clusters) will be staged.

NSL-Unitree supports a "check status" function where the requesting program can check

if a single file was already staged to disk. Therefore, the assembler needs to issue a series

of checks to see which of its requested files has been staged. Once a positive response is

received for a specific file, the assembler issues a request to the DRS library to read the

relevant portion of the file and to transpose the data into the desired order. The

information for composing the DRS request is derived from the original application

request as well as information from the allocation directory on how each cluster is
structured.

The subset assembler places the data which are returned as a result of the DRS request

into a pre-allocated buffer space that is large enough to hold the entire subset requested by
the application. It then repeats the above process, one cluster at a time, until all clusters

have been read. For most visualization applications this subset is small enough to fit in

memory. Otherwise, it will be stored on the user's workstation disk. There is the potential

of performing these reads in parallel, but we have not concentrated on parallel disk reads,

since the major bottleneck for the application is reading files off robotic tape storage.
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We plan to partition a commonly used dataset and use this subset assembly process for

visualization applications in the summer of 1995. We have performed several experiments

and simulations to verify the expected benefits of partitioning a dataset into clusters.

These were performed directly on the device, and do not involve the read process

described above. We expect the read process to add negligible overhead to the

measurements made, since the main component of the response time is reading data from

tertiary storage. This needs to be verified through direct use of the subset assembler. The

results of the experiments and simulations that were performed so far are given in Section

4.

3.3 HPSS interface implications

We plan to extend our work to the NSL's HPSS storage system as well. There are

significant differences between NSL-UniTree and HPSS that may improve the

effectiveness of the current mass storage system interface design.

HPSS already implements a COS capability [8] that defines a set of performance and

service quality attributes assigned to files and affects their underlying storage resources.

COS definitions are designed to help provide appropriate service levels as requested (or

demanded) by HPSS clients. In the current HPSS implementation, COS is a data structure

associated with a "bitfile", a logical abstraction of a file as managed by an HPSS Bitfile

Server. The storage resources used to store the bitfile's data are provided by HPSS Storage

Server objects. These Storage Server objects (virtual volumes, storage maps, and storage

segments) are associated with a COS-related data structure called a "storage class" that

identifies device-dependent characteristics of the type of storage provided by the objects.

Using an HPSS Client API library that currently mirrors POSIX.1 specifications,

applications such as the read and write processes described here can specify an existing
COS identifier for a file, or fill in COS "hint" and "priority" structures to describe desired

(or required) service quality attributes for the file. User-specified priorities which may be

NONE, LOW, DESIRABLE, HIGHLYDESIRABLE, or REQUIRED, affect how the

hints will be treated by the Bitfile Server. Using these capabilities, it should be a

straightforward process to provide to HPSS with the COS attributes generated by the

dataset partitioning engine, and to have these attributes interpreted properly by the

servers.

Creating a new file through the Client API is currently performed through an

"hpss_Open" call whose input parameters can include pointers to the hint and priority

structures. The Bitfile Server will be required to locate an appropriate type of storage if

these structures are provided by an application. On the other hand, if null pointers are

passed, the Bitfile Server will be free to use a default COS definition for the new bitfile.

The hpss_Open call returns a pointer to the COS definition actually used by the Bitfile

Server so that applications may monitor the level of service they receive.

The Storage Server's storage segment object is the conventional method for obtaining and

accessing "internal" storage resources. Clients of the Storage Server (this would normally
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be the Bitfile Server, but could be a data management application authorized to use

Storage Server APIs) are presented with storage segments of specific storage class, with

address spaces from 0 to N-1 (where N is the byte length of the segment). The Bitfile

Server, or other client, provides a storage class identifier and an allocation length during

creation of new storage segments. During the Storage Server's allocation of new physical

space, only storage maps that have proper storage class are searched. To ensure locating

free space of the appropriate type, the storage class should represent a service conforming

to the client-specified COS hints and priorities passed to the Bitfile Server when creating
new fries.

The COS capability in HPSS was designed to be extensible, and additional attributes can

be implemented to exert greater influence over server actions for data cluster placement

and migration operations. A stated goal for future releases of HPSS is better integration

with large data management systems and COS attributes for controlling placement or

collocation of related data on physical media in HPSS. This will allow HPSS to be easily
used by the read and write processes described here.

Unlike NSL-UniTree, the separation of the Bitfile Server, Storage Server, and

Migration/Purge Server in HPSS is clearly defined. Modular APIs exist at each server

interface, providing different implementation choices using HPSS. One approach is to

expand the Bitfile Server's present COS definition to match the requirements of the data

partitioning engine and assembly process. The current bundling algorithm could be

implemented as added code in the Bitfile Server to ensure inter-cluster cohesion is

maintainable. Another approach is to write a new application that could entirely replace

the Bitfile Server. This application, if appropriately authorized, could access the internal

storage class metadata structures of the Storage Server, and would also be able to provide

application-specific COS attributes to interested storage consumers. As a Bitfile Server

replacement, it would be able to create its own mappings of COS to storage class, thus

explicitly controlling the actions of the Storage Server, and therefore able to enforce
external partitioning decisions at the internal device level.

4. Simulation and Experimental Results

4.1 Measurements on hardware characteristics

We have performed detailed timing measurements on an Exabyte Carousel Tape System
as well as an Ampex D2 Tape Library System, to validate our hardware model and also

collect the appropriate parameters for the model. The results of our experiments are
shown in Table 1.

Note that the file overhead for the Ampex system is quite large (11 seconds, which is the

time needed to transfer 141 MB) due to our lack of control over the behavior of the

robotic system. In contrast, the Exabyte has a relatively small file overhead. In order to

remain device independent, we treat each device as a black box and measure its

performance. Our first experimental results from the Ampex were both larger than

expected, and less consistent from file to file. We speculated that the speed of the device
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might be high enoughthat a degreeof inertia might be presentin hardware,or that it
might be presumedin software,such that consecutivefile readsat high speedswere
unattainablein ourenvironment.

To testthishypothesis,we inserteda smallpadfile (1 KB) betweeneachof the larger test
files. This resultedin muchfaster,andmuchmoreconsistentreadtimesfor thetestfiles.
Consequently,theaveragefile overheaddecreasedfrom 11 to 3.25seconds.

The effects of file overheadon query responsetimes are discussedin the Section4.3
below.

Exabyte
Ampex
(high FO)
Ampex
(low FO)

Capacity

(MB)
4500

Transfer Seek Mounting File

Rate Speed Overhead

(MB/s) (MB/s) (Seconds) (seconds)

0.265 31.25 315 0.24

25000 12.864 503.32 39 11.0 141.5

25000 12.864 503.32 39 3.25 41.8

File

Overhead

(MB)
0.064

Table 1: Measurements of hardware characteristics

4.2 Response Time Results

Based on these hardware measurements, we were able to apply our partitioning algorithms

to an actual PCMDI dataset. We could then compare the response times of queries before

and after we apply the partitioning method. The partitioning method puts query types into

groups, such that all query types in each group have at least one variable in common.

Obviously, there is no need to consider the effect of a query type on another if they

access no variables in common. This simplifies the presentation of possible solutions to

the designer. The query types defined by the designer for the actual dataset are shown in

Table 2 along with the amount of data that each needs to access.
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query
type

variableanddimensionsspecification

quer),t_,pesfor group1
1 U,V,W for anymonthat groundlevel.'
2 u,v,w for anymonthat all heightlevels
3 U,V_W.for anydayatanyheightlevel
4 U,V,W for anymonthat anylevel for anyY
5 U,V,W for any ]tearat all levelsfor rangeof Y

querytypesfor l_roup2
T for anymonthfor all for all X,Y,Z6

7
8

Megabytes
requested

76.2
1447.5

1.6
3.0

2171.3

482.5
T for arangeof 3 monthsfor anyheightlevel
T for anl¢sampleonanyheightfor aranl_eof Y

querytypesfor group3
9 IA cloudvariablefor anymonthfor all X,Y 50.8

Table2: Querytypesandamountof datarequested

76.2
0.07

Note thatgroups1and2have5 and3 querytypes,respectively,andgroup3 hasonly one
querytype. It turnsout thatgroupswith only onequerytypearequitecommon,sincefor
somevariablesthereis only onepredominanttypeof access.It is alwayspossibleto find
an optimal solution for a query type belongingto such a group, since there are no
potentialconflicting query types. Therefore,weshowhereonly one suchrepresentative
group.

Note that the amount of data requestedvaries from less than a megabyteto over 2
gigabytes. Queries requestingsmall amountsof data are typically for visualization
purposes,while thoserequestinglargeamountsof dataare typically for summarization
and postprocessing. Queriesfor intermediateamountsof dataare typically neededfor
analysis,such as Fourier transformation. The post processingtype queriesare less
important to optimize since they take so long that usersmight as well wait for an
overnightprocessing.

Tables3 and4 showthe response time for the 9 query types of Table 2. The response

times are expressed in minutes, where "original" and "new" refer to the times before and

after partitioning, respectively. The new timings on the Ampex were actual measured

times on the real system, while all other times are calculated times based on the measured

hardware model. It was impractical to run the queries before partitioning because their

response time takes several hours. We also show the optimal times, which are calculated

assuming that all the information to answer the query is in a single file, and that the file is

positioned at the beginning of a tape. Thus, the optimal time is equal to the time to mount

a single tape, plus the time to read the first file.

Query

type

1

Megabytes

requested

76.2

Optimal

6.45

Original

174.97

New

6.45

Ratio

I

27.13
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2 1447.5 92.85 174.97 92.85 1.88
3 1.6 1.72 30.55 4.08 7.48
4 3.0 7.35 174.97 92.85 1.88
5 2171.3 274.27 2142.60 1118.72 1.92
6 482.5 32.01 174.97 40.83 4.28
7 76.2 6.45 535.65 6.45 83.05
8 .07 3.25 30.55 3.25 9.40
9 50.8 8.44 237.30 8.44 28.12

Table3: Exabytecarouselresponsetimes(in minutes)

Query
type

1

Megabytes
requested

76.2

Optimal

0.75

Original

9.80

New

2.73

Ratio

3.59
2 1447.5 2.52 9.80 2.73 3.59

3 1.6 0.65 1.60 2.73 0.59

4 3.0 0.65 9.80 2.73 3.59

5 2171.3 3.47 117.00 29.07 4.03

6 482.5 1.27 9.80 10.67 0.92

7 76.2 0.75 29.30 1.90 15.42

8 .07 0.65 1.60 1.90 0.84

9 50.8 0.72 9.80 0.72 13.61

Table 4: Ampex D2 tape system response times (in minutes)

The dataset we experimented with, contained 57 variables (each defined over all or a

subset of the seven dimensions X,Y,Z,S,D,M,Y) and 62 query types. These query types
were derived after extensive interviews with scientists interested in this dataset. The

query types were partitioned into groups as explained above, and each group was analyzed

separately. The tables only show the query types that access the wind velocity vector

U,V,W, the temperature T, and one cloud variable that had only a single query type

associated with it. However, they are representative of the response times for other query

types as well. In practice, most of the variables are accessed by a single query type, and

only a few variables are accessed by 2-5 query types.

The original layout of the dataset was one where all the variables for all X,Y, and Z for a

period of 5 days was stored in a single file. Files were stored one after another according

to time, until the next file would not fit on the same tape. At this point a new tape was

used and the process continued until all the data was stored. This storage method

represents the natural order that data was generated by the climate simulation program,

which, in general, is a poor organization for typical access patterns. The original response

times were calculated on the basis of this actual storage of the dataset.
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We notethat all thenewresponsetimeson theExabytearebetterthanthe original times.
For theAmpex tapesystem,the improvementsin responsetime arenot asdramaticas in
the caseof the Exabytetapesystem.The main reasonfor this is that the Ampex hasa
muchlarger file overheadthantheExabytetapesystem.The largefile overheadresulted
in larger files beingcreatedby thepartitioningalgorithm. In thecaseof variablesU,V,W,
eachfile correspondsto onemonthof datafor all X,Y, andZ, whichcomesto roughly 1.5
GB of dataperfile. And in thecaseof variableT, eachfile correspondsto roughly two Z
levelsof datafor all X,Y, andT, which comesto roughly700 MB of dataper file. The
consequenceis that queriesthat askfor a smallamountof dataend up readinga single
largefile to answerthequery. This is especiallyobviousfor querytypes3 and 8, where
theresultis thattheresponsetimeis evenslowerthanwith theoriginal dataorganization.
As will beseenin thenextsection,theimprovementof thefile overheadfrom 11seconds
to 3.25secondsmadea significantdifferencein theresults. In addition,ouralgorithmcan
takeadvantageof partialfile reads(nofile overhead)to furtherimproveperformance.

As expected,thepartitioningfor thecloudvariableachievedoptimal time asit wastuned
for thesinglequerytypeaccessingit.

4.3 Effects of the file overhead

The experiments with the Ampex robotic system were performed after it was connected

recently to NSL-UniTree. As was mentioned above, the file overhead was found to be

quite large, about 11 seconds. Consequendy, the size of each cluster was relatively large

(about 200 MB), and the total number of clusters for this dataset was only 245 for a one

year dataset. For the lower file overhead (about 3.3 seconds), which was obtained later,
the size of each cluster was about 100 MB and the number of clusters about doubled. As

discussed below, the lower file overhead improved the solution results significantly. In

general, when the file overhead is small, and the number of clusters is larger, the response

times tend to be shorter, because less unnecessary data is read for a given requested subset
of the dataset.

To understand the effect of the file overhead better, we performed a simulation for the

same set of query types, assuming the lower file overhead of 3.25 seconds and no file

overhead at all. The effect of no file overhead can be achieved if the tape system permits

partial file reads; that is, the system can seek to a position on the tape and read precisely

the number of bytes requested. Thus, we can take the set of files (clusters) assigned to a

tape and store them consecutively as a single physical file. This is indeed a feature that

the Ampex system is capable of, and it will be exploited in the NSL-HPSS

implementation (mentioned in Section 3.3).

The simulation results (in minutes) for the Ampex system are shown in Table 5, along

with the original and measured response time that were shown in Table 4 for comparison

purposes.
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Query
Type

1
2
3
4
5
6
7
8

Original ! HighFO LowFO NoFO HighFO LowFO NoFO
ratio ratio ratio

9.80 2.73 1.58 0.75 3.59 6.20 13.07
9.80 2.73 2.68 2.53 3.59 3.66 3.87
1.60 2.73 1.58 0.75 0.59 1.01 13.07
9.80 2.73 2.68 2.53 3.59 3.66 3.87

117.00 29.07 25.70 24.60 4.02 4.55 4.76
9.80 10.67 8.88 8.19 0.92 1.10 1.20
29.30 1.90 0.86 0.75 15.42 34.07 39.07
1.60 1.90 0.86 0.69 0.84 1.86 2.32

9 9.80 0.72 0.72 0.72 13.61 13.61 13.61

Table 5:Effectsof variousfile overheadson responsetime for theAmpexD2

As canbeseen,thenewratiosimprovedfor all querytypes,someby a factorof 4, andthe
responsetimesfor all querytypesarebetterthantheoriginal timesin both thecaseof the
low file overhead(low FO) andthecaseof no file overhead(no FO). Thesesimulation
resultsshowthat systemsthatpermitpartial file readsperformbetterthansystemsthatdo
not supportthat. But, evenif partial file readsare not available,the gains that canbe
obtainedby the partitioning algorithmsarestill very significant,especiallyin casesthat
thefile overheadis low.

Our experimentsconfirmed, asexpectedthat the lower the file overheadthe better the
results. However,wehavelearnedfrom theexperimentsandsimulationsthat evenwith a
large file overheadthe overall improvementof the partitioning algorithm is very
significant. As wasshownin Table4, 6 of the9 queriesimprovedby a factor of 3.5 to
15,at the costof 3 queriesdegradingby a smallfactor of lessthan2. We alsonote that
the lower file overheadof 3.25secondsis still large comparedto the Exabytesystem.
The file overheadis a function of the softwarethat controlsthe tapesystem,and that it
should be reducedto the extent possibleto accommodatescientific applications. Of
course,thebestdevicesfor this purposearethosethatsupportpartial file reads.

5. The Dataset Partitioning Workbench

Naturally, the scientist who will be using the dataset (or a database designer acting on the

behalf of multiple scientists) is in the best position to know what are the typical queries

that will be used and the frequency of their use. The dataset partitioner should optimize

the reorganization of the dataset according to this information. Initially, we thought that

letting the scientist specify a weight for each query will be a reasonable way of

representing the relative importance and/or the frequency of use of each query. However,

we found out that assigning weights is not a meaningful task for the scientists, and was

confusing in practice.

Depending on the weights assigned to queries, different partitioning solutions can be
found. The choice of a partitioning solution is very important since the process of
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partitioningandreorganizing a large dataset is a costly one. Thus, it was important from

a practical point of view that we develop methods for facilitating the process for selecting

a solution based on intuitive measures rather than query weights. The result is an

interactive "partitioning workbench". The goal of the workbench is to help the scientists

see the trade-offs between possible solutions based on actual times that each query will
take under a given solution.

In presenting the solutions to the scientist, we assume that all queries that belong to the

same query type will have the same response time. In reality the response times to queries

that belong to the same query type may vary somewhat depending on where the data

relevant to the query is located on tape. This approximation is reasonable since each

query that belongs to the same query type needs to access the same amount of data.

We observed that in order to make the estimates on actual times meaningful it is necessary

to present them relative to the best possible time for each query. The best possible time

(optimal time), is calculated assuming that all the information to answer the query is in a

single file, and that the file is positioned at the beginning of a tape. Thus, the optimal
time is equal to the time to mount a single tape, plus the time to read the first file. For

example, if the best possible time for a query is 30 minutes, and the solution chosen

results in 33 minutes, there is little to gain by trying to further optimize for that query.

We produce the multiple solutions presented to the designer as follows. We start by

assigning all query types the same weight, and generate multiple possible solutions based
on the permutation of the dimensions. Each solution consists of the estimates on actual

response times for all query types, as well as the optimal response times. The solutions

are ordered according to the overall response time relative to best possible times. The

best solution is presented to the user as "option 1" as shown in the left part of Figure 5
(which is actually in color, but shown in black and white here). It shows an actual

partitioning of a dataset for the Ampex robotic tape system. Six query types are

considered for this group of query types (group 2) where the narrow bars shows the

optimal times, and the thick bars the actual times for each of the six query types. As can

be seen this option achieves optimal times for the first four query types, at the expense of

the last two. Note that the user can control the scale of the display for better viewing of
details.

At this point, the user can select any query type to be viewed on the fight part of the

screen for other possible options. For example, the scientist may want to optimize query

type 5, and see what the effect will be on the other query types. The scientist selects

query type 5 (by clicking on it) and all possible solution options are then displayed, as

shown on the fight part of the screen of Figure 5. As can be seen, there are three options

that achieve optimal time for query type 5: options 2, 4, and 5. The scientist can now

select any of these options (by clicking on the desired option) to see the effect on other

query types. Suppose that option 2 was selected. The result is shown in Figure 6. As can

be seen in the left part of the figure, the effect of selecting option 2 is that query type 5

achieves optimal time at the expense of slowing down query types 1, 2, and 4. This may

be a preferred solution if indeed query type 5 is particularly important to optimize for.
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Thescientistcancontinueto exploreotheroptionsandsettleon themostdesirableoption
for his/herneeds. This form of interactionis much moremeaningful to scientiststhan
assigningweights. Seeingthe trade-offsin termsof actualtimes makesthe choiceof a
solutiona morestraightforwardprocess. In somecasestheremay be a seriousconflict
betweenquery types,in that selectinga solutionthat favorsonequery typemay disfavor
another,andvice versa. Whensuchconflictsarisethescientistneedsto makea difficult
choiceor resortto someduplicationof data. We havenot addressedsofar thepossibility
of dataduplication. It is thesubjectto futureresearch.

Select a group _ _ _eel _,_le 116 1

3.75

3.00

Ou_/Type

option viewed

2.25

Minutes

1.50

I,I,d o...optimum

_i_J_:i:i:i:i---!:!_:!"--!:_i:":_!_i-:!!i.i_":iiiiii_.:i__:::iii.:_i-::_::. -- 0.00

Data Placement Option

Query Viewed

Figure 5: Display of a solution option for a group of query types
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Figure 6: Display of a solution that optimizes query type 5

Once a desired solution is selected, the restructuring of the dataset into multiple clusters

and their layout on tape volumes is generated by the workbench. This information is used

by the write process to partition the dataset accordingly and to store the clusters on tapes.

The front end of the workbench was implemented using a relational database system

(ACCESS) on a PC Windows platform that presents the user with a GUI. It is used to

store up to 25 tables that contain the dataset information, the hardware characteristics,

query types, and the various partitioning solutions calculated. The backend of the

workbench is a collection of C++ programs that calculate the partitioning solutions, and

the estimated response times. In addition to screens for selecting a solution discussed

above, there are various screens developed for the scientists to enter or modify the

information on datasets, hardware characteristics and query types.

6. Concluding remarks

Scientific application that access very large datasets face a major bottleneck when they

need to access subsets of very large datasets from tertiary storage. This state of affairs has

been the main reason that scientific analysis is not currently performed on an ad-hoc basis.

Analysis cannot be spontaneous if a request for an interesting subset takes hours. Further,

if the mass storage system is sharable by many users, the access of unnecessary data when

subsets are requested, reduces the efficiency of such systems. As a result, supporting a

certain user load requires additional physical devices such as read channels or larger

robotic systems.
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The approachwehavetakenis commonin data management systems. To achieve higher

efficiency of data access from disks, data is often clustered according to its expected use.

We have chosen to work closely with a specific application area (climate modeling) where

this problem is affecting the productivity and quality of the analysis. This gave us a
realistic framework to understand the nature of spatio-temporal datasets and typical access

to such datasets in modeling applications.

The results so far confirm the benefits of this approach. In realistic examples, it was

possible to pinpoint typical access patterns and restructure the datasets to fit the intended
use of the data. We found it useful to provide users with estimates of response times for

making partitioning choices. Once a partitioning choice is made, users can estimate the

response time to ad-hoc queries, and decide whether they want to wait for a response.

Because many of the requests are for on-line visualization, the size of the subsets

requested are small, and thus only a few clusters need to be accessed. In such cases,

response time improved by a factor of 10-100.

There are many directions that one can take at this point. One is to consider the benefits

of duplicating some of the data. In some applications, a small percentage of duplication

can dramatically improve global response time when query types have inherent data

partitioning conflicts. Another area is to consider more general access patterns and query

types.

There is also the question of how generic such algorithms can be. We think that it will be

necessary to specialize on application domains. However, selecting broad categories of

data types, such as spatio-temporal data, or sequence data (e.g., time series), can make

such techniques generally useful. The reason that we chose to concentrate on the spatio-

temporal domain is that many disciplines are in this domain (geology, earth science,

environmental sciences, etc.) and that spatio-temporal datasets tend to be very large

(simulation data, satellite data, etc.).

Finally, it is worth mentioning that tape striping techniques are being investigated to

mitigate the slow response time of accessing data from tape systems (see, for example

[10]). In this approach no knowledge of access patterns is used; rather it is intended to

take advantage of multiple tapes that are synchronized to be read in parallel. Striped tape

systems will complement our partitioning techniques, in that clusters could now be spread

over multiple tapes for parallel reads. The main gains provided by partitioning will

continue to be important when we use such systems because they reduce the data that

needs to be read for a given request.
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Abstract

The goal of the NOAA/NESDIS Active Archive was to provide a method of access to an
online archive of satellite data. The archive had to manage and store the data, let users

interrogate the archive, and allow users to retrieve data from the archive. Practical issues of
the system design such as implementation time, cost and operational support were
examined in addition to the technical issues. There was a fixed window of opportunity to

create an operational system, along with budget and staffing constraints. Therefore, the
technical solution had to be designed and implemented subject to constraint imposed by the

practical issues. The NOAA/NESDIS Active Archive came online in July of 1994, meeting
all of its original objectives.

Introduction

The functional requirements of the NOAA/NESDIS Active Archive were quite similar to
most other archives. The NOAA/NESDIS Active Archive had to perform the following

functions: 1) provide a means to manage and store a great number of large datasets 2) give
users access to interrogate the archive 3) give users the ability to retrieve data from the
archive. In addition, the following technical features were also desired: scalability so new
and future datasets could be included, a modular architecture to allow enhancements, and

security since the archive was intended to be accessed across the Internet. All of these
requirements and features could be implemented in a straightforward manner using
hardware, software and a support staff focused entirely on creating the archive. The
challenge faced in designing and implementing the NOAA/NESDIS Active Archive was to

successfully accomplish the same task by us!n.g existing hardware to minimize cost,
commercial off the shelf (COTS) software to mlmmize software development, and existing

support personnel to reduce new staffing requirements.
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Theimplementationof thesefunctionsandfeatureshadtobetemperedbythefactthatthere
wasa window of opportunity to implement the archive, a limited budget,and other
everydaywork still to beaccomplished.Thegreatestpotentialenemywasthegoal itself,
thedesignandimplementationof thearchive.If thedesignwastoocomplex,it might take
toolongto implementandmayneveractuallyhappen.If thedesigndid notutilize existing
hardwareandsoftware,costmight prohibit theprojectfrom movingforward. If "leading
edge"becamethebuzzwordfor toomanycomponents,thentheprojectwould be throttled
by the effort neededto bring thesecomponentsinto anoperationalstate. If the skills
neededby programmersand the supportstaff were not available, time for the training
would extend the time neededfor development. If too many changesto operational
proceduresandthe "usualwayof doing business"wereneeded,managementmight not
agree to the proposed changes. By considering these issues ahead of time and
understandingtheir implications, the solutionhad to avoid these"potholes"as muchas
possible.

Characteristics of Archive-Stored Data

The initial purpose of the NOAA/NESDIS Active Archive was to store (level 1B) datasets
from the Advanced Very High Resolution Radiometer (AVHRR) instrument flown on

NOAA's current series of polar orbiting satellites. In the future it is very likely that
additional datasets from the current satellites and new datasets from future satellites will

become candidates for inclusion. The AVHRR datasets vary in size from 50 to70
Megabytes (MB), so 00MB is used as an average for calculations. Each operational
satellite transmits approximately 45 datasets per day. Today there are 2 satellites, NOAA
12 and NOAA 14, downloading AVHRR data. So daily data volume is 5.4 Gigabytes
(estimated).

Issues Considered

The design of the NOAA/NESDIS Active Archive had to achieve a balance of the following
issues: implementation time and complexity, overall system cost, commercial availability
of hardware and software, reliability, future growth and scalability, and the migration path
from existing systems

Solution Approach and Architecture

The solution selected takes advantage of the strengths of two different families of

computers: the IBM mainframe and UNIX workstations. The mainframe offered high
reliability, strong I/O capabilities, established connectivity to mass storage devices and
time-proven Hierarchical Storage Management (HSM) software. UNIX workstations were

chosen for their reasonable price for performance, the availability of tools for developing
user interface programs, and strong TCP/IP performance for lnternet user access and data

delivery. So the function of data management and storage would be done by the
mainframe, and the functions of interrogating the archive and retrieving the data would be
handled by the UNIX workstations.

The function of interrogating the archive is done totally by the UNIX workstations, with
no assistance from the mainframe. This was done for the following reasons. First, the
performance of interrogations of the archive would be more consistent by maintaining, on
the UNIX workstation, the database of metadata that describes each dataset. The

mainframe is heavily used by many other batch-oriented jobs and thus has many periods of

peak utilization. This could affect the response the user sees. Second, storage and
generation of the browse images is done on UNIX. To assist the user in narrowing down
the list of desired datasets, a browse image is provided on request. The underlying goal of
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interrogatingthearchiveis to helptheusernarrowdownandlimit thenumberof datasets
thatareof interest.Thissavestheusertimebecauseonly thedatatruly desiredis obtained.
And, it helpsto minimize theloadon thedatastorageandmanagementfunction because
fewerdatasetsare requested.Finally, reliability of thesystemshouldbehigher because
eachfunctionis independent.If thearchiveinterrogationfunctionis notrunning,thedata
managementand storagefunction cancontinueto acceptincoming data. Or if the data
managementandstoragefunctionis temporarilyunavailable,theusercanstill interrogate
thedatabaseandsubmitrequeststo retrievedata(althoughtherequestmaytakelongerto
fulfill).

The approachdescribedaboveprovidesscalability. One of the true strengthsof the
mainframeis theattachmentandthroughputto storagedevices.Thisstrengthwill probably
continuewell into the future,allowing for growth. In additionit is possibleto have the
archive interrogationprogramsquery multiple data servers,which would be another
techniqueto increasecapacity.Modularity is alsoemphasizedwith this approach.The
userinterrogationfunctionisseparatefrom themanagementandstorageof data. Similarly,
retrievingthe datais accomplishedwithout the userseeingor having to understandthe
storageandmanagementof thedata. Theseabstractionsallow changesto bemadeto any
componentsof the solutionwithout changesto theothercomponents.For example,new
tools for interrogating the archive can beadded without affecting the storage and
managementof thedata. Or, new datastoragedevicescanbeutilized without the user
havingto worry abouthowthedataisretrieved.Securityisalsoprovidedbecausenouser
candirectly accessthedatastorageand managementfunction. Usersonly interactwith
applicationmenuson UNIX, which thencauseother eventsto occur elsewherein the
system.

An additionalbenefitof thisapproachis that theNOAA CEMSCS(CentralEnvironmental
SatelliteComputerSystem)mainframewasalreadythere, handling theingestof these
datasets,connectedto a massstoragedevice,andwith a knowledgeablesupportstaff.
So,part of the neededsolutionwas in placeand functioning. Plus, theprocessingthat
alreadyexistedonCEMSCS,suchascreatingother NOAA satellitedataproducts, could
utilizethedatain theactivearchiveaswell.

While thehybridapproachoffersmanypositivefeatures,therearesometradeoffs.Thereis
administrativeoverheadfor coordinatingthemetadatadatabasewith therealarchive.There
could be missing entries or incorrect entries, each of which would causedifferent
problems.Also, operationalsupportissuesaremorecomplexmaintaininga systemthat
spansacrosstwodifferentcomputingplatforms.

Solution Overview

The description of the solution is based on the functional requirements stated earlier: the

ability to interrogate the archive, the ability to retrieve data from the archive, and dataset
management and storage. The description of interrogating the archive and retrieving data
will be in the section below labeled "Interaction with the Archive", while the dataset

management and storage description will be in a section of the same name. Each section
will cover how the function is implemented, as well as a description of the hardware and
software used.
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Interaction With the Archive

User Interrogation of the Archive

A user wants to see what is in the archive based on a set of criteria. For example, "Is there
any data in the archive from the month of May, 1994 over Greenland?" The metadata
provides these answers. The NOAA/NESDIS Active Archive provides access to the
metadata through an application called the Satellite Active Archive (SAA). SAA is
responsible for collecting the metadata after the dataset is available on CEMSCS. In

addition, SAA also provides a series of menus to allow the user to query the metadata and
view the results. The results are a list of identifiers that point to specific datasets in the
archive. As a final aid to the user, SAA provides a browse image for each AVHRR dataset
in the archive. The browse image is at a lower resolution than the actual data, but should

be of great value to the user. For example, by viewing the amount of cloud coverage in a
scene, the user can further reduce the number of datasets that are of interest.

Retrieving Data From the Archive

After the user has selected some datasets of interest, now the user wants to go and get the
data. Once again, the user interacts with the SAA application. SAA presents a series of
menus to allow the user to order the datasets. The user can order the data for electronic

delivery or delivery on tape media. In addition, the user can order the complete dataset or
an extracted portion of the dataset. Presently SAA imposes a restriction on the amount of

data that can be delivered electronically to insure reasonable network performance. The
extract capability makes this possible because the user can limit the size of the delivered
data by reducing the geographic area desired or by requesting fewer channels of data.

After the user is done interacting with the SAA application, the dataset management and
storage function is finally called into action. A job is submitted to the dataset management
and storage function to retrieve the requested data. First, the hierarchical storage
management software gets the raw data wherever it may reside. Then the extract function
is performed to cut out a piece of the data and add proper headers. Finally, the SAA
application sees that the dataset management and storage function has the data ready and
waiting. Then SAA picks up the data and delivers it to the customer in the requested
manner.

UNIX Work Station Functions

The IBM RS/6(K_ UNIX workstation running AIX was chosen to implement the UNIX
based functions. Although most UNIX workstations could have performed the necessary
functions, the RS/60_ was chosen for three main reasons: first, an existing contractor
had strong knowledge and skills to support the RSI6000. Second, the RS/6000 offered

ESCON channel connectivity to the CEMSCS mainframe. This could be used as a highly
reliable, high performance point-to-point communication link using standard TCP/IP
applications like FTP and NFS. Finally, the original basis for the front end application
was the Global Land Information System (GLIS) from the US Geological Survey EROS
Data Center (EDC) in Sioux Falls, SD. GLIS had been ported to the RS/6000, so the local
software developers had a strong head start.

The front end application (SAA) that the user interacts with utilizes both ASCII and X-

windows based screens. The SAA screens and menus were based on GLIS. Strong
similarities can be seen between the systems today and may continue due to future
cooperation. The cooperation and help provided by the EDC staff was of invaluable
assistance in getting the SAA prototype off the ground so quickly. Similarly, the SAA
metadata database uses INFORM1X, following the recommendations of EDC.
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The electronic data delivery capabilities of SAA were a brand new function that had to be
added since GLIS did not support electronic data delivery. The delivery functions are
designed to provide reliability and flexibility for growth. Reliability was a necessity, since
use of the NOAA/NESDIS Active Archive would probably be minimal if users could not
be confident of receiving the data they had ordered. Flexibility for growth was important
so the system could be up and running in a short time, but permit the easy addition of new
functions such as FTP push and subscriber data delivery. Also, as usage grew,
modifications may be needed to insure balanced network performance.

Work Station to Mainframe Communications

The solution architecture necessitates communications between the CEMSCS mainframe

and the UNIX workstations on two occasions. The first is to update the metadata database
and generate the browse images on the UNIX workstation. The second is to retrieve data
from the physical archive for delivery to customers.

The update of the metadata database is accomplished in the following way. The UNIX
workstation wakes up at regular intervals (presently every hour) and does a directory
listing (using NFS) of high level qualifiers where the AVHRR data resides. This list is
compared to a list of datasets already in the metadata database. The MVS naming
convention uses the Julian date, so only one day's worth of data is examined at a time. If
any new datasets are found, they are either copied to UNIX or processed across the NFS-
mounted directory. Some datasets can be processed across the NFS-mounted directory
because only the header needs to be read. A record of the metadata information is created
and then entered into the database. At the same time, the browse image is created and
stored.

The process for retrieving data is more complex. First, the SAA application on the
workstation submits a request to the mainframe. This request is actually a JCL job that is
submitted using FTP. The recall and availability of the dataset needed is handled
transparently by the SMS (system managed storage)/HSM software on the mainframe.
The JCL job runs the extract to subset the dataset if needed. The result is placed in a
particular directory and named by the SAA order number. A suffix is added to the name to
indicate whether the job is in progress, successfully completed, or failed. Next, the SAA
application on the workstation does a directory listing from the mainframe using NFS. If a
file named with the SAA order number and the proper suffix is found, that file is copied to
the UNIX workstation from the NFS mounted directory.

At this point, the SAA Delivery Server manages the delivery of the data to the user. The
Delivery Server is a program that is modeled after a "state diagram". Each order
corresponds to a unique entry in the order database. The Delivery Server wakes up at a
regular interval and performs a specific action on each order based on what "state" the
order is in. For instance, a job may be submitted to CEMSCS, a check is made if the
extract job is complete, the dataset is copied to UNIX, or the data is FTP'ed to the user.
The Delivery Server has the ability to retry any state a specified number of times. If a
failure is detected, a message is sent to the SAA system administrator.

Data Management and Storage

The Storage Server

The storage server used was the NOAA CEMSCS (Central Environmental Satellite
Computer System) mainframe. CEMSCS is a multisystem complex of two IBM ES/9000
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mainframesandassociatedperipherals.Workloadisscheduledandresourcesareallocated
by theIBM MVS JobEntry Subsystem(JES3). CEMSCSis usedcreatelevel 1Bdatasets
aswell asmanylevel2 andlevel3 productsbasedontherawdata.

Software Utilized on the Storage Server

The storage server software selected on CEMSCS is based on IBM's mainframe Systems
Managed Storage (SMS). The data archiving component of SMS is HSM, which has
matured over twenty years of intense DP growth as a COTS solution. CEMSCS had
previously elected to utilize HSM as a viable alternative to postpone and minimize
expensive DASD acquisition. Since this product had proven successful in managing data
for the CEMSCS environment, HSM was reviewed to see if it would satisfy the needs of
the NOAA/NESDIS Active Archive. The concern was not the amount of data, which is

measured in multiple terabytes, but rather the number of files retained. The number of files
is in the area of many hundred thousands. The management of this large number of

distinct files approached the limitations of HSM but recent changes addressed this concern.
SMS has allowed CEMSCS to minimize personnel requirement, standardize storage
retrieval and archiving methodologies, and isolate the installation from the ever changing
hardware enhancements.

SMS attempts to optimize placement of data, according to installation directives. This
process maximizes automation and minimizes the staffing requirements, but initially
requires a higher level of expertise. Complex issues, such as data reference patterns,
locality of reference, read to write ratios, etc., are minimized but not eliminated. Once the
directives are established, the day-to-day process requires less expertise. SMS allows
minute to minute evaluations about data to be made without requiring manual intervention
while minimizing data access time.

HSM manages the retention and migration of data, again according to installation
directives. HSM attempts to ensure that frequently referenced data is maintained on
accessible storage while less frequently referenced data is maintained on alternate, less
expensive storage media. Data may be migrated to less expensive DASD or tape media,
depending upon installation criteria, e.g. data, size, importance, or residency time. Data
compression can be optionally performed on the migrated data at either the software or
hardware level.

The retrieval of data, i.e. moving data from a lower form of the hierarchy to a higher one,

is performed with no user intervention. If the data has been migrated and it is referenced,
then HSM automatically moves it to an accessible media. If the data has to be brought back
from a non-DASD device, then a user can be notified that the retrieval may require an
"extended" amount of time. With the inclusion of tape robotics, this extended time is less
than ninety seconds..

Archive Storage Devices

Access to data must be accomplished from DASD. Once SMS has placed a file on an

appropriate DASD device, the file remains on this device until it is migrated by HSM or
deleted. Several different DASD media have been utilized at CEMSCS. DASD caching

maintains response time, especially for the larger capacity devices. SMS allowed CEMSCS
to easily create npools" of DASD to satisfy the different requirements of the archive. In

- this context, a pool is simply a grouping of DASD for a specific purpose. As the archive

development evolved and moved into operations, so did its requirements. To date, these
changes have been easily addressed via SMS mechanisms.
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CEMSCS created two pools of DASD for the archive. Initially the satellite data is placed in

a pool of four IBM 3390-II and three IBM 3380-III where it resides for one to three days,
depending on access. If the data is migrated from this initial pool and subsequently
accessed then it is recalled to a separate pool of five IBM 3390-II. This smaller pool has a

different migration and residency criteria than the initial pool. The archive concept is that
current data is more likely to be accessed: therefore, keep it accessible and do not waste

resources migrating it. After time, data is less likely to be accessed; therefore, the data can
be migrated. If data is recalled, then the data is placed on the second pool. This method
allows recalled data not to impact the management objectives of the current data.

Cost effectiveness has convinced CEMSCS to migrate to robotic tape subsystems. Two
different vendors' robotics have been utilized, as well as two different tape media, IBM

and STK, 3480 and IBM 3490E. The 3490E media is the media of choice for HSM's

migration function. The 3490E has the capacity required for the archive and the 3490E has
the ability to locate records on tape directly. HSM "understands" and takes complete
advantage of these hardware enhancements of the 3490E device. Due to the nature of the
satellite data, the hardware compaction (IDRC) available with the 3490E does not provide

much benefit, less than three percent.

Currently SAA has captured a terabyte of data comprising 19K files. A subset of this data
resides on the two DASD pools of 16 GB. The remainder resides on 1,100 3490E

volumes,
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Abstract:

The Alaska SAR Facility collects, processes, archives, and distributes data from synthetic
aperture radar (SAR) satellites in support of scientific research. ASF has been in operation
since 1991 and presently has an archive of over 100 terabytes of data. ASF is performing
an analysis of its magnetic tape storage system to ensure long-term preservation of this
archive. Future satellite missions have the possibility of doubling to tripling the amount of
data that ASF acquires. ASF is examining the current data systems and the high volume
storage, and exploring future concerns and solutions.

Introduction:

Synthetic Aperture Radar (SAR) is an imaging radar technique involving the use of an
aircraft or satellite-borne antenna to obtain an artificial radar aperture effect by utilizing the
forward motion of the vehicle. Using the movement of the aircraft or satellite, the antenna
emulates a larger sized aperture antenna. The technique produces the results of a larger
aperture antenna, and is especially important when size limitations would prevent using the
physically larger antenna.

The Alaska SAR Facility (ASF) was established at the University of Alaska Fairbanks in
1986. Funded by NASA, ASF is dedicated to the collecting, archiving, processing and
distribution of SAR data. The major data-handling systems in use today at ASF were
developed by the Jet Propulsion Laboratory, and installed in Fairbanks in 1990. ASF first

began collecting data from the European Space Agency's ERS-1 satellite in August of
1991. More satellites were scheduled for later dates. ASF receives SAR data in real-time

and tape recorded transmissions from satellites, processes the data into other usable forms,
archives and distributes the data, in accordance with NASA's international agreements.
Because of these agreements, ASF must maintain the archive of raw data for ten to fifteen
years after the end of the satellite's mission.

ASF can receive SAR data covering Alaska, eastern Siberia, the Arctic Ocean, the north

Pacific, and northwestern Canada. ASF collects large volumes of raw SAR data and
processes the data into images that scientific researchers use to study sea ice,
oceanography, geology, glaciology and botany. The processed images add to the large
data store at ASF. Data are archived at ASF for long term storage on high density magnetic
tape.
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Satellites:

ASF is currently collecting data from two satellites: ERS-1 (European Remote-Sensing
Satellite-l) and JERS-1 (Japanese Earth Resources Satellite). Incoming data from ERS-1
and JERS-t is approximately 1.2 terabytes per month, or over 14.4 terabytes per year.

SATELLITE MISSION INFORMATION

ERS- 1

Launch Date July 17,
1991

Mission fife
Number of Links*

Data rate (mbps)
Orbital Period

On-Board HDDRs

Archive Data

Beyond Mission

* X band only -- does
** ASF only collects

signal.

105

100.47 min

no

10 years

not include S

data from the

JERS-1 ERS-2 RADARSAT

Feb. 11, Spring, Spring, 1995
1992 1995

2 years
2

)/es

5.25 years
2

60/60 105 105/85
95.87 min 100.47 min 98.594 min

no

10 years10 years
yes

15 years

ADEOS

Feb. 1996

3 years
3

60/60/6

98.59 min

yes

nfa

band.

high bit rate signal. ASF does not use the low bit rate

The ERS-1 satellite is the European Space Agency's (ESA) first remote sensing satellite.
ESA launched ERS-1 in July of 1991. ERS-1 transmits data at 105 megabits/sec (or

approximately 13 megabytes/sec). ERS-1 data passes last up to fifteen minutes and ASF
records multiple datatakes per day. The average number of data-collecting passes per day
is nine, which yields 41 minutes per day of data. ASF collects approximately 32 gigabytes

per day from ERS-1. The anticipated mission life of ERS-1 was three years. At present,
ASF is still collecting data from ERS-1. ERS-1 will be decommissioned "after ERS-2 is

operational.

The JERS-1 satellite is one of the Japanese space agency's (NASDA) Earth Resources
Satellite. JERS-1 was launched in February of 1992. The JERS-1 satellite has an on-

board tape recorder and can transfer two streams of data simultaneously. The JERS-1
satellite also has two sensors on-board, one SAR and one optical. The optical data are
recorded and sent on to NASDA for processing. The SAR data are archived at ASF and
sent to NASDA. Data are transferred at 60 megabits/sec (or 7.5 megabytes/sec), regardless
of whether the data are real-time or recorded. ASF collects on an average of four passes

per day, which averages about 19 minutes per day. ASF collects approximately 8.5

gigabytes from JERS-1 daily. The anticipated prime mission life was two years, however,
JERS-1 is in extended mission phase, which could last for seven more years.

The ASF Facility:

All the ASF components are important to the successful operation of the facility. Focusing
on how the data get to the archive and how the data are retrieved narrows the number of

departments down to those two directly involved in the physical archiving processes,
which are the Receiving Ground Station (RGS) and the SAR Processing System (SPS).
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Functional Diagram - ASF Today
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FIGURE 1 -- CURRENT ASF FUNCTIONAL DIAGRAM

Receiving Ground Station:

The RGS (Receiving Ground Station) tracks satellites with a 10 meter tracking antenna.
Using high speed, high density recorders, the RGS then receives and stores the data from
SAR satellites for later use by the processing system in support of researchers. The raw
signal data recorded and stored during this process are considered level 0. ASF records
two tape copies of the raw signal data. One tape is designated as the Archive Signal tape

and put into storage as a backup to the second tape designated as the Working Signal tape.
The Working Signal tape is used for data retrieval and processing operations.

Currently, ASF uses Honeywell HD96 and AMPEX DCRSi tape recorders to record
incoming satellite data. In the case of the ERS- 1 data, the DCRSi recorders record both the
Archive Signal tape and Working Signal tape. With JERS-1 data, the situation is slightly
different because of the on-board tape recorder. Data intended for NASDA are recorded on
HD96 recorders, while SAR data to be used at ASF are recorded on AMPEX DCRSi tapes.
For both the HD96 and DCRSi, data are recorded to the recorders in the serial mode.

The HD-96 reel tapes will hold about 15 minutes or approximately 12 gigabytes of raw
signal data. The DCRSi tapes will hold 40 to 50 minutes or 47 gigabytes of raw signal
data.

SAR Processing System:
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The SAR ProcessingSystem(SPS)readsanddecodestheraw datainto imageproducts.
Datathathavebeenprocessedby theSARprocessorareconsideredlevel 1data.

Theonly taperecordersconnectedto theSPSaretheAMPEX DCRSirecorders.Thedata
areaccessedin parallelmode. ASFcannotretrievedatafrom theHD96 tapesunlessthe
datawererecordedorcopiedon toDCRSi tapes.

Raw datacanbeprocessedinto full resolutionimagesandlow resolutionimages.It takes
195megabytesof rawdata(approximately15secondsof datatransfer)to makeoneERS-1
full or one low resolutionimage. TheERS-1full resolutionimageis 8k x 8k pixels and
covers an approximate area of 100km x 100km. JERS-1 raw data size is slightly
smaller. Thefull resolutionimageis slightly smalleralso,coveringanapproximateareaof
100km x 75km. Processingthe raw data into a full resolutionimagegeneratesa file
approximately64 megabytesin size. By taking an 8x 8 averageof the full resolution
image, the full resolution imagecanbe processedinto a Ik x lk pixel low resolution
imagethat takesup approximatelyonemegabytefile space.To date,ASF has processed
over 100,000 full resolution images.

It takes on the average 20 minutes to process one minute of raw data. With a datatake
lasting anywhere from six to fifteen minutes, the processing of one datatake can run 120 to
300 minutes. One DCRSi tape can hold ten to twelve passes. The access time from end to
end of an AMPEX DCRSi tape is five minutes. To process one DCRSi tape would take
over twenty hours.
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Archive:

ASF is collecting approximately 1.2 terabytes per month. ASF's archive consists of

DCRSi tapes only. Currently, there are 980 Archive signal tapes and 1162 Working signal
tapes on compact shelves at ASF. ASF also stored full resolution images on DCRSi tape.
There are 237 of these image tapes in the archive. ASF currently has approximately 96
terabytes in the archive on Archive and Working Signal tapes. With another approximate
10 terabytes of full resolution images, ASF's current data storage totals 106 terabytes.

Along with the DCRSi main archive, ASF also has low resolution images archived on 12"
optical platters in a jukebox. Currently, ASF has over 146,000 low resolution images
stored on the optical platters, totaling about 146 gigabytes.

Use of AMPEX DCRSi Recorders at ASF:

ASF presently has six AMPEX DCRSi recorders on site. Three of the recorders are
dedicated to the RGS and three are dedicated to the SPS. A recorder can be switched

between subsystems, if needed to keep ASF operational. Two of the recorders were
delivered to ASF in January of 1989. Three other recorders were delivered around
November of 1990. The sixth recorder arrived in May of 1992. The sixth recorder is
slightly different from the other five recorders. AMPEX had made some design
modifications on the recorders by 1992. One of the new features on the sixth recorder is a
low tension tape transport. This feature lowers the tension on the tape in the recorder and
reduces the amount of stretching and fatigue on the DCRSi tape. Another one of the new
features is a wide tip scanner. This feature improves the ability of the recorder to read from
and write to the tape. The sixth recorder is currently installed on the RGS.

Figure 2 shows a simplified layout of how data are recorded on the DCRSi tapes. Two
tracks are recorded longitudinal. The control track is used by the AMPEX recorder, and

ASF does not do anything with this data. The user log and coarse address track is used by
the AMPEX recorder when searching for data to get the tape roughly to a requested
address. The user log contains information such as satellite identification, type of data, and
the satellite revolution number. The recorder uses the coarse address information to get the
tape near the specific address. The recorder will then read the transverse data to locate the
specific address. The RGS computer will record the beginning and ending scan addresses
from the DCRSi, so that the data can be retrieved later using the SPS. An example of a
coarse address is 100100, while an example of a scan address is 100112. The DCRSi

recorder has a bit error rate (BER) of lxl0 -7 or better. DCRSi tapes are rated for 500

passes in low tension tape recorders, and 200 passes for high tension tape recorders.
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Figure 2 -- Simplified Data Scan

Figure 3 shows a simplified diagram of the scanner head and tape assembly. The data are
written on the DCRSi tape from the scanner while both scanner and tape are moving.
Although the tape is moving, the tracks of data are written in transverse mode. The scanner
is moving fast enough that the tracks are only. 1 slanted from the horizontal, and so is
considered transverse. The scanner is rotating at a speed of 512 rps. The linear tape speed
is 5.28 ips. There are six heads on the scanner. Each head will scan a track of 4374 bytes
of data onto the tape, consisting of 4356 bytes of user data and 18 bytes of addressing/time
code data. As each head will write one track of data per revolution, the recorder writes

approximately 3073 tracks per second, with an average of 582 tracks per inch of tape.

[Scanner Rotation

Not to scale

Tape flow

Figure 3 -- Simplified AMPEX Head/Scanner Assembly

ASF invests considerable effort to support this suite of recorders. ASF has two staff
members, trained by AMPEX, to perform standard maintenance and repairs on the DCRSi
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recorders.Every attemptis madeto standardizeall measurementson therecorders.ASF
performsweeklymaintenanceon theDCRSirecorders,includingacrossplaytest. Using a
singletape,acrossplaytestpatternisrecordedoneachrecorder.Thetapeis thentestedon
eachrecorder. A computerrecordsthedifferencesanderrorsin eachof thetestpatterns.
This processshowsthe staff whichmachinesrequireany typeof headphaseadjustment.
Thestandardcrossplaytestingis donein theserialmode.

ASFmaintainsa supplyof sparepartsandboardsonsite. Thereisa backuptapetransport
assemblyfor onsitereplacement.If therecordercannotberepairedbecauseASF'sspare
is in useby anotherrecorder,ASFmustcontactAMPEX to seeif AMPEX hasasparepart
in their supply, ff AMPEX does,theywill shipthepart to ASF. ASFwill replacethepart
andsendthedamagedpartbackto AMPEX. ASFusuallygetstheworkingpart in acouple
of days,so downtime is minimal. If AMPEX doesnot havea sparepart in their supply,
ASF's part must besent to AMPEX for repair, which can take at least a month, but
typically more like two to three months. Of the six AMPEX DCRSi recorders on site, on
the average five recorders are functioning at any given time.

Since 1991, ASF has accumulated over 106 terabytes of data and has supported the
processing of over 100,000 image products for science and operations users nationally and
internationally. ASF is investigating several operational issues regarding the combination
of tape recording systems and data-handling systems, which may be helpful to other users.

Retrieval of Signal Data:

ASF is experiencing problems retrieving raw signal data from the AMPEX DCRSi tapes
after only three years of data collection. When recording satellite data, any number of
reasons during transmission could cause a data dropout on the tape. Generally, an operator
watches the RGS equipment during a download of data. In particular, the operator is
watching a spectrum analyzer to make sure a good X-band signal is being received. If the
X-band signal drops during recording, this is considered a data dropout, and is hand-noted
in the RGS log for reference later. The signal loss indicates that there could be more than
one segment of data to process. If there is a problem during processing, the RGS log is
consulted to determine if an operator noted a problem during the satellite datatake. Under
normal operations, the processor reads a Working Signal tape, finds a code indicating the
beginning of a datatake, and accesses the data until a code indicating the end of the datatake
is found.

When the SPS tries to read the signal data, and reports back more than one or two
segments of data, the RGS log is checked to see if there was a problem when the data was
recorded. If not, then there is a problem with retrieving the signal data. A processing data
gap occurs when the SPS loses synchronization with the scan address codes in the raw
signal datatake, meaning that the next scan address is not what the SPS was expecting.
The SPS assumes that this is the end of the segment and searches for an ending code.
Finding none, the SPS will then search for a new beginning code. Since this problem is
occurring in the middle of a data segment, the SPS will find neither codes. The SPS will
then assume that that was the end af the data, and begin processing the next section of the
data segment that the SPS can read, using the same beginning code. An operator will
manually cancel the request to retrieve this datatake with the number of segments goes
above six. Figure 4 shows what happens when the SPS loses sync with the data on the
tape. Approximately 5% of the datatakes processed to date have shown problems during
retrieval. There was no indication of physical damage to the tape, nor does any data
suggest that ASF has accessed this tape more than 200 times.
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Figure 4 -- Data gaps on a single segment datatake

Normally ERS and JERS data will have no more than three planned segments per datatake,
with the typical number of segments being one or two. The sync loss problem can tum a
one or two segment datatake into a twelve segment datatake. A data gap is where the SPS
loses sync with the scan addresses. There are two ways of trying to recover the data in the
data gaps. One method involves moving the tape to another recorder and trying to access
the data there. Different tape machines will read the same tape differently. There is no

guarantee that changing drives will solve the problem, and switching drives to reprocess
the data is a time consuming operation. At one point, ASF scanned the Archive Signal tape
first to see if errors would come up in the same spot on the Archive signal tape as the
Working Signal tape. If a scan of the Archive Signal tape experiences the same errors in
the same spots, ASF assumes that a dropout in data did occur during the original recording
of the raw signal data. The most expedient and most successful method of fixing the
problem is to dub that datatake from the Archive Signal tape to another tape. Because the
process of dubbing the Archive Signal tape to another tape was so successful, ASF has
eliminated the scanning step. To date, ASF has dubbed approximately 225 datatakes.
These dubs have added an additional 22 DCRSi tapes to the archive. By using one or both
of these solutions, ASF resolves the data problem about 95% of the time. ASF has been
unable to retrieve less than .3% of the archived raw signal data.

After consulting with AMPEX about the symptoms, the problem was diagnosed as a head
phase and channel gain/equalization problem. This problem is the result of crossplay:
recording the tape on one machine and trying to play the same tape on another recorder.
One of the factors that affect the playback of a recorder is channel gain and equalization.
The channel gain and equalization settings affect the reading of the data. The channel gain
refers to the amplitude of the data signal. The channel equalization minimizes the errors in
a data signal. By adjusting these settings, the number of bit errors can be reduced.
Adjusting the channel gain and equalization settings is a way of optimizing the recorder's
performance, but it is a time-consuming process. Another part of the problem with
crossplay is head phase. The head phase on one machine is going to be slightly different
from the head phase of another machine. This means that the timing control for a specific
head will turn the head on either before the head has reached the tape data or while the head
is in the middle of the tape data. Trying to read the tape when the head is not where it
should be results in the dropout-like error. The head phase and channel gain/equalization
are set when a scanner or transport assembly is replaced. It is not part of the weekly
maintenance to check these settings. If ASF experiences multiple data retrieval problems
with a recorder, ASF will check the gain/equalization and adjust if necessary.
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AMPEX informedASF thatthenewAMPEX DCRSi 107shouldsolvethisproblem. The
new AMPEX 107 auto adjustsplay alignment to the tape. Playback alignment may
improve a high bit error rate.[6] ASF is in the processof acquiringa 107model from
AMPEX to verify if this would indeedsolvethe problem. The play alignmentfeature
makesinternaladjustmentsto thefollowing: gain,equalization,clockphase,andtracking.
Theplaybackcommandis issuedto the 107,but theadjustedsettingsarenotpermanent.If
thesavecommandis not issued,a resetor poweroff will clearthesesettingsout of the
memoryandreturntherecorderto theoriginaloperatingrange.

Retrieval of Image Data:

ASF also archived the full resolution images output by the SAR processor. ASF was
having problems completing approximately 14% of the full resolution image requests. The
SPS would encounter problems when retrieving image data from an Image Archive tape.
This problem was almost exclusively an addressing problem. There are two variations of
the full resolution images addressing problem.

The JPL designed system software treats the tape drive as a disk drive, by preaddressing
the tape. The preaddressing of a tape simply involved writing sequential addresses on the
DCRSi tape. After an image was recorded on the DCRSi tape, there was the chance that
the DCRSi would not write over the preaddressed address, causing a discontinuity between
the legitimate addresses of the images. When trying to retrieve the images, the recorder
would read one of the preaddressed addresses, which was not contiguous with the
addresses for the images. The software was not designed to handle this problem, and after
a few tries to retrieve the data, the process would stop. The result was that an image could
not be retrieved because the correct address could not be found.

The second part of the addressing problem involved potentially corrupt scan addresses.
AMPEX told ASF that there was a possibility that the scan address in the transverse data
could be corrupted. If the scan address was corrupted, the software would not be able to
find the exact address where it should be and the image retrieval process would be stopped.
This problem had the same results: the image could not be retrieved because the correct
address could not be found.

An additional problem with retrieving the image data was the bit error rate (BER). For raw

data the acceptable BER is 3x10 -5. For the full image data the acceptable BER is lxl0 -9.

The rated BER of the DCRSi is lxl0 -7 or better. The two orders of magnitude between
the raw data and rated BER allows a margin for error in the data. Because the full image
demanded a much lower BER, the recorders would have to operate above the rated BER all
the time, which is not a reasonable expectation. Even without the preaddressing problem,
ASF believes that the full image data would have been more difficult to retrieve because of
the low tolerance for errors in the data.

Originally ASF attempted to solve the addressing problem. Changes were made in the
software to bypass the preaddressing issue, but the secondary corrupt scan address
problem persisted. A fix to the corrupt scan address problem was discussed. It would
have been possible to modify the software to allow an operator to back the tape up to a
readable address, and then skip forward the expected number of bytes between this
readable address and the requested address, however this fix would not have solved the
BER issue. Because of these problems and other constraints, ASF abandoned the archive
in August 1994. ASF decided that it would be more efficient and more successful to
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processan imagewhena userrequestedit, ratherthanarchivetheimage,useup limited
archivespace,andtry to retrievethedatawhenandif auserrequestedtheimage. ASF is
changingto a process-on-demandstrategy,wheresignaldatawill beprocessedto image
data,deliveredto theuserandno longerarchived. Thischangeis beingmadefor several
reasons,including budgetconstraints,spacelimitations,andevolution of theentire data
system.While thischangein strategy"solved"theproblemswith thefull resolutionimage
archive,it mayintroduceadditionalproblemsin thelengthof thearchivelife by increasing
thefrequencyof accessto signaldata.

Archive life:

The estimated shelf life of the AMPEX DCRSi tapes is at least fifteen years.[1,7] During

shelf life, degradation of the magnetic coating will eventually lead to unreadable tapes. To
date, no deterioration of the archive as a function of age has been detected. Reading an

archive tape will also cause degradation of the magnetic coating. As the DCRSi tapes are
rated for 500 passes in low tension machines and 200 passes in high tension machines
before suffering loss of data, increased access to the archive tapes will hasten their decline.
This is especially true since all but one of ASF's recorders are high tension machines. ASF
is migrating to a process-on-demand strategy where each time an image is requested by a
user, the Working Signal tape will be accessed to process the image and satisfy the request.
This will put increased wear on the tapes, which could shorten their lives. In turn, the
increased wear on the Working Signal tape would also increase the frequency of
duplicating from the Archive Signal tape. Also, for long term storage, tapes should be
rewound every one to five years to relieve stresses in the pack.[1] Every access to Archive
Signal tape increases the risk of damage.

Because of the high speed access of the DCRSi recorders, catastrophic damage to the tapes
could result in toss of all data on the tape. Catastrophic damage includes broken tape, tape
stretch, or severe crinkle in tape that could catch as the tape passes the scanner. Even the
act of dropping a tape cartridge could damage the data on the tape.[1] Minor damage, such
as minimal tape edge crinkle, could result in the loss of the information where the damage
is, but the rest of the tape should be readable. This makes the archive "fragile" in the
respect that any physical damage to the Archive Signal tape could result in loss 6f
irreplaceable data. Because the Archive and Working Signal tapes are stored in the same
room, any damage to the current storage area, such as fire or water leakage, could lead to
loss of data as well.

Future Focus:

The other satellites in the Satellite Mission Information chart are future data sources. The

addition of ERS-2 and RADARSAT in 1995 will at least double, if not triple, the data
volume ASF is currently handling. Because RADAI_SAT also carries an on-board recorder

like JERS-1, multiple data streams could also be possible, which would also affect the
incoming data volume. With the new satellites, incoming data will increase from
approximately 1.2 terabytes per month to between 2.3 to 3.3 terabytes per month.

Along with the new satellites, ASF will be archiving and processing data collected at the
McMurdo station in Antarctica. ASF anticipates that McMurdo will send approximately
800 DCRSi tapes every six months. This equals approximately 36 terabytes per shipment.
Because these tapes are ASF's only copies, ASF will have duplicate the tapes when they
arrive to produce a Working Signal tape. The originals from McMurdo would become
ASF's Archive Signal tape.
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SoonASF will addtwo SonyID 1recordersto theRGS. In approximatelyoneyear,ASF
will addsix moreID1 recordersandasecond11metertrackingantennato theRGS. The
six ID 1recorderswill bepartof theADEOSsatelliterecordingprocess.Thetwo SonyID 1
recorderswill replacethe DCRSi recordersfor ERS-1SAR datacollection. The ID1
recorderswill recordboth the Archive SignalandWorking Signal tapes. There is no
presentplanto converttheexistingDCRSiArchiveandWorkingSignaltapestoID 1tapes.
The ID1 usesa DD-1 mediumtape,which holds about40 minutesof raw signaldata,
approximately41.2gigabytesandhasanendto endaccesstimeof lessthan90seconds.

For long termplanning,ASF is consideringthefollowing factors: largevolumesof data,
longterm archiveresponsibility,high downloaddatarate,easeof operation,maintenance,
andtheaccessandretrievalnecessaryto supportproductionanddistributionof data.

Solid statememory and disks have faster accesstimes than tape, however, they are
generallynot economicallyfeasible. Although researchis making progressin the high
capacity disk storageto reducecosts,beyonda certain point disk storageis still not
economicallysound. Tape,either magneticor optical, arestill the most likely storage
methodsfor ASF.

Opticaltapestendto haveahigherstoragecapacitythanmagnetic.Bothtapeshavesimilar
accessspeeds.Improvementsin magnetictapeshavemadesometapescapableof lasting
morethantwentyyears,but thestandardfor magnetictapesstill seemsto be tento fourteen
years.Durability duringdatareadsis anotherfactorto consider.Opticaltapesseemto be
more durable. Testson the ICI 1012optical tape reel, have shown that the tapecan
withstand250,000passeswith nodegradationof data,while magnetictapesaretypically
2,000 to 40,000 passes.[2,3]The optical tapesystemshaveslower write speedsthan
magnetictapesystems.Existing laserandmediatechnologiesachieveawrite speedof
approximately3 megabytes/second(24megabits/second).

Robotic silos would reducelabor costs of someof ASF's archive and data retrieval
process.The AMPEX DCRSirecorderscannotbeusedin a robotic silo. Roboticsilos
have a rangeof capabilitiesto assistin archiveand retrieval of data. The drives for
receivingandplay backof satellitedatacouldbeattachedto thesamesilo, howeverfor
betterarchiveprotection,two separatesilos, onefor Working Signal tapesandone for
Archive SignalTapes,will beinvestigated.Thetapescouldbepassedbetweensilos,and
usedon differentdrives,sothatif all therecordersin onesilo areoccupied,the datatape
canbepassedto anothersilo with anavailablerecorder.Theaccesstimein asilo involves
accessingand mounting the tape. In somecases,manufacturesalso include drive
preparationtime. Accesstimesrangefrom four to eighteenseconds.Thenumberof tapes
that a silo can storevarieswith manufacture. Somesilos canhold 6000 tapes(suchas
StorageTekPowderhorn),while othershold only 200 tapes. The type of tapesusedin
silosvariesaswell, from VHS to IBM 3480.

For future datastorageimprovements,ASF will be looking at archival aspects,suchas
medialife and durability, volume of media, and robotic possibilities. Other factors such as

write speed and cost of the equipment to purchase, maintain, and operate will also be

important.

Summary:

As the volume of data at ASF continues to grow, the current data handling systems at ASF
will be stretched to the maximum. With the data,,v, Qlume more than doubling in the next
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few years, ASF is examining the current data handling systems. From operational

experience, ASF has a new understanding of the AMPEX DCRSi recorders and how they
function in the current data handling systems. This understanding has led to some

operational and program changes at ASF, but these changes may not be enough to
accommodate future data handling and storage requirements. Increases in data volume and
frequency of data access will affect ASF's data handling and storage systems. Machine

cost, machine capabilities, media life expectancy and durability, archive safety, and robotic
capabilities are some of the factors that ASF will consider when planning equipment
improvements to the data storage and handling system. With careful planning, ASF will
insure the protection of the irreplaceable data collection for future scientific research.
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Abstract

The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has
been developed to enhance Earth Science research by improved access to remote sensor
earth science data. Building and operating an archive, even one of a moderate size (a few

Terabytes), is a challenging task. One of the critical components of this system is Unitree,
the Hierarchical File Storage Management System. Unitree, selected two years ago as the
best available solution, requires constant system administrative support. It is not always
suitable as an archive and distribution data center, and has moderate performance. The

Data Archive and Distribution System (DADS) software developed to monitor, manage,
and automate the ingestion, archive, and distribution functions turned out to be more
challenging than anticipated. Having the software and tools is not sufficient to succeed.
Human interaction within the system must be fully understood to improve efficiency and

ensure that the right tools are developed. One of the lessons learned is that the operability,
reliability, and performance aspects should be thoroughly addressed in the initial design.
However, the GSFC DAAC has demonstrated that it is capable of distributing over 40 GB

per day. A backup system to archive a second copy of all data ingested is under
development. This backup system will be used not only for disaster recovery but will also
replace the main archive when it is unavailable during maintenance or hardware
replacement. The GSFC DAAC has put a strong emphasis on quality at all level of its
organization. A Quality team has also been formed to identify quality issues and to propose
improvements. The DAAC has conducted numerous tests to benchmark the performance
of the system. These tests proved to be extremely useful in identifying bottlenecks and
deficiencies in operational procedures.
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Introduction

The GSFC DAAC is being developedin severalphaseswith Version 0 (V0) being
developedto supportexistingandpre-EarthObservingSystem(EOS)Earthsciencedata
sets,facilitatethescientificresearch,andtestEOSDataandInformationSystem(EOSDIS)
concepts. This paperpresentsthe GSFCDAAC V0 missionsand requirements,and
describesits architectureat the softwareand hardwarelevel. The ingest, archive,and
distribution processesareexplainedanda walk-throughof thesefunctionsis presented.
Numerous tests have also beenconductedto benchmarkthe performanceof storage
devices, specific functions (e.g., ingestion), and the overall system. The testswhich
helpedidentified deficienciesin operationalproceduresandsoftwarearedescribed.The
Hierarchical File StorageManagementSystem,Unitree, is a critical componentof the
DAAC. Somemajor issueswerediscoveredduring the integrationof Unitree with the
GSFCDAAC hardwareand software,anda list of lessonslearnedhasbeencompiled.
There are some issuesthat were identified during the development,integration, and
operationalsupportof this systemwhich arealsodiscussed.Anothertopic presentedin
thispaperis thefocusandpursuitof qualityby theGSFCDAAC.

GSFC DAAC V0 Mission

The initial version of NASA's EOSDIS is Version 0 (V0). This system consists of eight
DAACs disseminated across the United States. Each DAAC is generally specialized in
Scientific disciplines. The DAAC role is to enhance and improve scientific research and
productivity by consolidating access and distribution of Earth science data. The
evolutionary approach of building a Version 0 system is intended to demonstrate the

concept of an interoperable set of distributed archive centers and to prototype various
aspects of the system prior to the first EOS satellite launch.

The Goddard DAAC has defined its mission "to maximize the investment benefit of the
Mission to Planet Earth by providing data and services to enable the realization of the
potential of global climate data by the science and education cormnunities".

GSFC DAAC V0 Requirements

The GSFC DAAC is being developed in response to EOSDIS functional requirements as
well as requirements generated from Science projects such as Sea-viewing Wide Field-of-
view Sensor (SeaWiF_), Coastal Zone Color Scanner (CZCS), Total Ozone Mapping
Spectrometer (TOMS), Advanced Very High Resolution Radiometer (AVHRR), Tiros
Operational Vertical Sounder (TOVS), and Upper Atmospheric Research Satellite (UARS).

The GSFC DAAC has currently 731 GB of data archived (Table 1). This number is

expected to increase to about 18 Terabytes by FY97 [1]. In 1995 the daily ingestion
workload is estimated to be 26.4 GB/day (Table 2). All ingested data (except AVHRR) are
compressed to reduce storage needs. This results in 18.9 GB/day of data being archived
on the Metrum RSS-600 ATL (95%) and the Cygnet Jukebox (5%). The volume of data

distributed is anticipated to be 40 GB/day of SeaWiFS data and 20 GB/day of non-
SeaWiFS data, for a total of 60 GB/day. Two types of distribution orders have been
identified: standing orders and random orders. The standing orders, by definition, are
requests by users for some or all of the data as it is being received at the DAAC. The
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randomordersareinteractiverequestsby usersfor datathathasbeenpreviouslyarchived
andis availablefor order. A significantproportionof ordersareexpectedto bestanding
orders(65%)andmostof thedataordered(89%)areassumedto bedistributedonphysical
media(e.g., 8 mm) with the remainingbeingsentover the network (ftp orders). The
distributionmediasupportedcurrentlyat theGSFCDAAC are8mm,4mm,9 track-6250
bpi. TheestimatedV0 DAAC workloadis illustratedin Figure1.

Product

SeaWiFS L 1 A (test)

SeaWiFS L2 (test)

AVHRR L3

UARS L3

TOMS

CZCS Level 1

4D assimilation

Total

Volume
!archived on

Metrum (GB)

1

111

35

97

141

385

iVolume
archived on

C_,_net (GB)
I

345

346

Total volume

archived (GB)

1
ill •

1

111

35

97

345

141

731

Table 1 Total Volume of Data Archived as of 10-31-94

Product

SeaWiFS (regular)

SeaWiFS (reprocessin_)
AVHRR

TOVS

UARS

TOMS

Total

Volume before

compression
(GB)

2.10

19.80

1.00

3.00

0.30

0.17

26.37

compression
ratio

0.72

0.72

0.25

0.80

1.00

1.00

Table 2 Estimated 1995 Daily Ingestion Workload

Volume after

compression
(GB)

1.51

14.26
|. i

0.25

2.40

0.30

0.17
Ill ][Hill i i i i]_

18.89
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FDDI Network T 4"6 GB/day

7.4GB/day i_GB/;I T!:: f:;y

_nm

22.6 (ti/day

EOSDADS2 EOSDATA

* Data oompressed (equivalent to 60 GB if uncompressed)

** Data cornpressed by AVHRR Pathfinder PGS(equivalent to 1 GB if uncompressed)

Figure 1 Estimated DAAC Workload (Volume/day)

GSFC DAAC V0 Hardware Architecture

GSFC DAAC consists of three components, a Product Generation System (PGS), an
Information Management System (IMS), and a Data Archive and Distribution System
(DADS). The PGS receives low level data products (raw data requiring processing) and
generates higher level data products. The IMS serves as a catalog of the data holdings
which can be searched and browsed by researchers to help them identify and order data of
interest. All data are archived within the DADS where they are available for on-line
retrieval to fill researchers' orders for data.

A strategy was initially developed [1] to identify the best cost effective hardware and
software configuration, and to measure the performance of the selected system [2]. Based
upon the latest requirements, and projected workloads, the GSFC DAAC Fiscal year 1995
hardware configuration for the IMS and DADS is illustrated in Figure 2. The following are

the points of the strategy.
• An SGI 4D/440 S (DADS) runs Unitree and the DADS software. To reduce the load, the
DADS software is planned to be moved to a SGI Challenge L. The Unitree cache has 40
GB of disk space.
• Near-line data are archived on either a Cygnet 1803 jukebox (1179 MB) with 2 ATG

WORM optical drives or an RSS-600 Metrum Automated Tape Library (ATL) (8700 MB)
with 4 RSP 2150 VHS drives.

• A secondary archive is planned with a Challenge S (Backup) to keep a backup copy of all
data ingested at the DAAC. The primary copy is archived by Unitree on an SGI 4D/440 S.
• The SGI Challenge L (DADS2) which has a larger number of I/O ports and fast internal
bus, has all the distribution tape drives attached to it. The GSFC DAAC has nine 8 mm
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drives, four 4 mm drives,and two 9 track drives. Additional drives may be addedto
satisfy futureneeds. To receiveingesteddataandcopydatato tapes(e.g.8mm)40 GB
and72 GBrespectivelyof diskspaceis available.Requestsfor FTPtransfersarekepton-
line on40 GB of disks.
• An SGI 4D/440 VGX (DATA) computerruns the IMS softwareand Oracle. This
machinehasalsotheclient which providesinteroperabilitywith otherDAACs througha
high-levelInformationManagementSystem.
• TheDAAC's distributedenvironmentincludesseveralethernetLocalAreaNetworksand
anFDDI networkconnectedto theEOSWAN.

GSFC

................ The Internet

.... ---_-......... EOSDIS WAN GSFC VO EOSDIS FDDI LAN

i_.'_..................................................;........ ..........7-..........

j Ingest Di1¢¢ Ibut ion

Back up i S tjg?j St: g lnj B ro w se/ $ta01n0 / : .... / / -- .. / / 2 GB Anonymou=

/ _-_ / i _ / [ _ S tll%;ng / / _ 16.VPGR

E 40 GB [ 1

17SGR141_D/4_MeOP $_/ MC__ 2S_6 I_"_y__ _GsI641_44t,_mVg; Da_tac:t_a.:.

4-_._;-(_-M-_)I 1V_,u';"((so"'_z)l 4 C_1.$ (150 / \ _4 CPUs (40 Mhz) 5 GB

- -I .n. / \

"_ Tape Drive x 2 9 Track Tape 4 Drives 9 Dave=

* 1 ddve used for secondary backup outside of UnlTree

1179 GB WO_ 8700 GB Automatic

Optical Jukebox Tap e Cartridge SysllJ m
2 Ddves 5 Drives*

Figure 2 GSFC DAAC FY 95 Configuration

GSFC DADS Functional Design

This paper will now focus on the DADS and the mass storage issues. The GSFC DADS
has three main functions: Ingest & Archive, Distribution, and Management. The ingest &
archive function consists of accepting data products from outside the system, extracting or

creating metadata, validating files, storing the files in the primary and backup archives, and
updating the database. The distribution function retrieves files from archives, stages them
to a distribution staging area, reformats the data if necessary (e.g. tar is the normal format
for orders), and then writes the data to tapes or to an FTP staging disk. The DADS
management software handles the scheduling, tracks DADS activities, and controls
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allocation and deallocation of resources. The DADS functional design is illustrated in

Figure 3.

Data

Transfer _,_

Archive

Search Order _ User

0

DADS
Management

FTP

Distribution

Media
Distribution

Random Order

Di stribut ion

Processing

Non-DADS Software

Figure 3 DADS Functional Design

GSFC DADS Ingestion, Archive, and Distribution Functions

The GSFC DADS currently ingests through network interfaces or directly from media
datasets produced by the following scientific projects: AVHRR, TOVS, TOMS, 4 D
Assimilation, CZCS, and UARS. The SeaWiFs project will be added to that list after the
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launch of its satellite scheduled in Spring/Summer of 1995. Ingestion of data over the
network is usually triggered when a scientific project invokes a client hosted on their

computer called Data Transfer Program (DTP) (Figure 4).

/ \ /
)TPD_.,__ DADS _ _ \ _,
)IHL) )ql_IP_ t Manager/"q'_--_l_ Scheduler)"ql_IP_ Manager)

st;

/ Data _L ]

/ / • N _r _-- Data

2 [.z_''1 T _ / T Base

In,jest t %, __ / 11'
Staqinq _ qlt f" "_/

Data ;/" ,,_.._ _ Data

T Base _ Base

ArchiveSoftware

_- ) Scheduling( Software

Non-DADSSoftware

Figure 4 Archive Architecture

The transfer of data begins after DTP receives authorization from the DADS, which ensures

the availability of resources to satisfy the ingest. The migration operations between the
near-line devices (Cygnet jukebox and the Metrum ATL) are handled by the Hierarchical

File Storage Management (HFSM) Unitree. The processing schedule and the resource
allocation/deallocation are performed by the DADS modules: DADS manager, scheduler,
and resource manager. A second archive copy is generated and handled by the archive
manager, archiver, and backup verify. The ingestion and archive processes are described
in detail in Table 3. In addition, Table 4 summarizes an Ingest/Archive walk-through.

329



LProcess
DTP

DADS Manager

i i

Scheduler

Resource Manager

m |

Ingest Manager

Archive Manager

Archiver

Ingest Staging Cleanup

Backup Verify

Description

Requests Ingest staging disk space from DADS Manager
and Transfers files from the client system to the ingest

sta_in_ area

Sequences transfer, ingest, archive, verify, and staging
cleanup

Interacts with the resource manager to allocate disk space,
and Starts activities when resources are available

Manages disk space in the ingest and distribution staging
areas

Starts the correct processing script for each transferred file

Script validates file, extracts metadata, and loads granule
level database tables

Batches archive requests

Initiates archivin_ activities on a size or time basis
Performs primary and backup archiving activities
Computes and stores checksum values

Exposes _ranules

Checks successfully archived files against standing orders
Copies files required by standing orders to distribution
staging and adds items to open standing orders
Removes successfully archived files from ingest staging
area

Run as chron job
Retrieves backup archives files and recomputes checksum
Compares checksum to value computed by archiver

Sends E-mail to data producer on success

Table 3 DADS Ingest/Archive Processes
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, Step
Transfer

Ingest

Archive

Ingest
Staging
Cleanup

Backup
Verification

Description
1. DTP client and server establish connection

2. DTPD sends a request for disk space to Scheduler via DADS Manager
3. Scheduler, using Resource Manager, determines when to initiate the
transfer and sends message to DTPD via DADS Manager to start transfer.

4. DTP Client and Server perform transfer
5. DTPD sends file completion message to the DADS Manager as each file
completes transfer

6. DTPD sends termination message to the DADS Manager after all files
are transferred

1. DADS Manager sends ingest request to Ingest Manager for each
transferred file

2. Ingest Manager starts appropriate processing script for each file
3. Ingest script extracts metadata, validates data, updates Data Base
granule table, and sometimes does compression

4. Ingest Manager sends ingest complete message to DADS Manager for
each file

1. DADS Manager sends archive request to Archive Manager for each
transferred file.

2. Archive Manager adds file pending archive list
3. When archive list reaches a size threshold, the Archive Manager sends a

batch archive message to the Scheduler via the DADS manager
4. The scheduler determines when to initiate the archiving activity and
sends a message to the Archive Manager via the DADS Manager to start
the Archiver

5. The Archiver copies the files to Unitree and to a backup tape, then
sends an archive complete message to the Scheduler via the Archive

Manager and the DADS.
1. The DADS Manager starts the Staging Cleanup process
2. Ingest Staging Cleanup determines which files need to be staged for
standing order distribution

3. Ingest Staging Cleanup requests disk space from the Resource
Manager.

4. If the distribution space is available, Ingest Staging Cleanup copies the
files and notifies the Resource Manager of the space used.

5. Ingest Staging Cleanup then adds the requested items to the standing

order request.
6. Ingest Staging Cleanup removes the successfully archived files from
the ingest staging area, notifying the Resource Manager of space made
available.

Runs as a chron job periodically
Retrieves backup archive files and verifies using checksum
Sends E-mail Notification to data producer that archive was successful

Table 4 DADS Ingest/Archive Steps
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Anothermajor functionof theDADS softwareis thedistributionof archiveddatato users.
New order requestsaregc'_eratedby the userusingtheIMS andare thenautomatically
submittedby theIMS tothe !3_DS. Requeststhatareinitially delayedareobtainedlaterby
theDADS by scanningtbedatabaseusinga programcalledpollreq (seeFigure5 ). Any
knownrequestcanalsobesubmittedmanuallyfor processingusingureproc. Thestaging
operationsbetweenthe near-linedevices(Cygnetjukebox and the Metrum ATL) are
handled by the HFSM Unitree. The processing schedule and the resource
allocation/deallocationare i_erformedby the Scheduler,ResourceManager,and Tape
Manager. TheDADS modut,_sdevelopedfor thedistributionfunctionaresummarizedin
Table5. To clarify thedistributionprocess,awalk-throughis describedin Table6.

_a t Stage _ ;:..."_,. t t 'g_° t--- _-_,_ _ ArcN_e

' _. "...'..".._] St_oing _ Non-DADS

- - _ Software
FTP to

_" External Systems

Figure 5 DADS Distribution Architecture
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Process

Request Poller (pollreq)

DADS Manal_er (dadsml_r)
Scheduler (schedsrvr)

Resource Mana[ger (rsmansrvr)
Tape Manager

Tape Display

Request Sever (reqserver)

Sta_e Server

Stage Copy

Tape Out

Description

Scans data base for requests that have not been initiated

Sends request ID to dadsm_r for each request found

Secluences archive and distribution activities

Maintains queues of processing activities
Interacts with resource & tape managers to allocate resources
Starts activities when resources are available

Manages disk space in in_est and distribution sta[_in_ areas
Controls allocation and deallocation of tapes
Controls automated (not manual) tape mounts for
distribution

Show status of all tape drives

Prompts operators to mount/dismount tapes
Locates all items in request and requests disk space
Starts Stage Copy when disk resources are available
Requests tapes required for request

Starts Tape Out process when tapes are available

"Batches" Unitree sta_in_ requests
Ask Unitree to stage files, and copies staged files to

distribution sta[_in_ area

Writes header and sta_ed files to distribution tape

Table 5 DADS Distribution Processes

Step
Staging

Tape Output

Description

I. ]MS or GenAutoOrder generates request in database
2. IMS or pollreq sends messages to DADS Manager to start processing request
3. DADS Manager sends request to Request Server
4. Request Server requests disk space from Resource Manager via DADS

manager and Scheduler
5. Scheduler, using Resource Manager, determines when to process request
6. Scheduler sends message to Request Server via DADS Manager to start
request processing

7. Request Server stages all files not already staged and creates symbolic links
for all files

8. If no output tapes are required then Request Server signal completion of

request
1. Request Server sends a message to Tape Manager via DADS Manager and
Scheduler for tape drive

2. Scheduler determines when to write output tape, using Tape Manager (and
Tape Display) to mount tape

3. Scheduler sends messages to Request Server via DADS Manager to write
tape

4. Request Server creates child process to write tape header and files. Request
Server signal completion of tape to Tape Manager via DADS Manager and
Scheduler

Tape Manager and Tape Display handle dismount of tape and bar-code label

lgeneration

Table 6 DADS Distribution Steps
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Ingestion and Archive Functions

Files are ingested at the DAAC using DTP which incorporates a modified version of ftp.
The regular ftp is not suited for background tasks and does not return error codes. The
DAAC had to develop their own ftp that can be executed via a call routine and that returned
error codes. The overhead associated with opening a connection and getting a response
back via the DADS Manager turned out to be long (30 s). With small files (< 5 MB), the

transfer time is much smaller than the opening connection time. It is therefore necessary to
transfer a large number of small files with a single connection in order minimize overhead.

The DADS manager is a central point by which each message is received and sent. This
design adds overhead and with a heavy load, this might become a bottleneck. Another

alternative architecture would be to send messages directly to the recipient without passing
through the DADS manager.

Scheduling the DADS activities efficiently is a difficult problem. The scheduler must
dynamically schedule all the DAAC activities based on resource utilization and task
priorities and some general policies. A resource can represent, for example, disk space,
tape drives, or the number of concurrent ftp sessions. The scheduler must also prevent
deadlock situations which would halt the system. In the first phase, the DAAC has
developed its scheduler using a very simple scheme First In First Out (FIFO). This
approach works fine when the resources are abundant. However, when there are

contentions for resources, the schedule using a FIFO algorithm becomes extremely
inefficient and slow. The granularity of the task is very important. Treating each process
as a task is not a good solution because of the large number of processes involved. On the
other hand, a task such as a distribution function has several sub-tasks that are to be

scheduled separately while maintaining the order in which each subtask should be
submitted. For example, a distribution function is composed of at least of a stage
operation, a copy to the distribution area, and a copy to tape. It would be inefficient to
allocate all resources needed at the beginning of the task. For instance a distribution tape
drive should not be allocated until the data is staged to the distribution staging area. By
dividing a task in a series of sub-tasks and by scheduling each individual subtask, the
system resources can be better used and the overall performance can be improved. Each
sub-task must allocate its own resources and the predecessors and successors of each sub-
task must also be preserved. A general-purpose constraint-based scheduling engine based
on the Time Map Manager (TMM) that uses a multi-level of tasks/subtasks is being studied
for integration in the DADS software.

The DADS software was based on a client/server configuration. In the current architecture,
each main function is a server that can be distributed over several platforms. The
implementation of a client/server configuration turned out to be more complicated than
expected. It is critical in this kind of environment to capture all errors and provide a
mechanism to recover from these errors. It is also imperative to ensure that no single
message is lost and that the communication protocol is very reliable. In the early stage of
the development of the DADS software, messages were lost and processes were hanging.
This could lock valuable resources indefinitely. One of the key problems with a
client/server configuration is that when a server crashes, it takes many jobs along with it.
A one process/one job philosophy would be better. Testing client/server software can also
be a very difficult task because it is not always easy to reproduce errors that had occurred
previously. With a client/server architecture, it is also important to limit the traffic of
messages in order to achieve a good performance of the system.
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Backup system

All V0 data are archived on several copies. The primary copy is on near-line storage
(WORM platters or VHS tapes) using the HFSM Unitree. This implies that the data are
stored with the Unitree Proprietary format. Relying on a single copy is prone for disaster
sooner or later. During the first year of being operational the GSFC DAAC experienced
unrecoverable errors on VHS tapes on six occasions, even though the life expectancy of the
media was 10 years. Most of the problems were linked with a bad tape drive. In
conjunction, the firmware of the Metrum drives used at that time did not limit the number of
retries in search mode, and the media was damaged by an excessive number of passes.
Unitree does not currently provide a mechanism to detect the number of soft errors or even
the number of times a given tape is mounted/dismounted. With large archives it is

imperative to detect such soft errors in order to predict when it is time to make another copy
before the media is permanently damaged. The cost of creating a duplicate copy of a tape
that has unrecoverable I/O errors can be a very expensive and time consuming task. Some
data sets are in high demand and are used extensively. For instance one tape was mounted
more than 2000 times in one year. With each mount, there are several passes and this
exceeded the maximum number of passes (3000-6000 for the VHS tapes) provided by the
manufacturers. Whenever possible, it is recommended to keep these highly requested
datasets on magnetic disks or optical media, not only to minimize the response time but also
to prevent such media degradation. It is not always easy to predict which datasets are
going to be in high demand and the use of media such as VHS tapes must be closely
monitored for high usage of individual tapes and a procedure put in place to copy these
tapes to new tapes as needed.

Currently, the second copy of the data in the archive is done using the standard tar format
on a VHS tape. This should facilitate the migration of the data to the EOS V 1 system. A
new backup system is under development. The plan is to copy all data by families (data set
and level) on a VHS tape and on a DLT tape. The DLT media seems promising. It has a

higher level of passes, stores a large volume of data and is relatively inexpensive.
However DLT is a new media and because of its low cost, the project decided to make

backup copies on both VHS and DLT until more is known about DLT drive and media
reliability. On several occasions Unitree was unavailable for several days and the
operations came to halt. The GSFC DAAC workload is going to increase several times
with the SeaWiFs data sets, and another occurrence of Unitree unavailability for a long time

would create difficulty in recovering from such long outage. To alleviate this problem, the
DAAC has a contingency plan to use the backup system as an ingestion and distribution
system. The backup is on a different machine, has its own drives and robotics, and is
being designed to handle such eventuality.

Distribution Function

After conducting tests with a heavy workload, it became clear that the number of new
distribution requests to process concurrently had to be limited (around 10). Several factors
contributed to this condition. First, with a large number of files to stage, each stage

command uses 3 processes, the maximum number of processes (500) available on the
DADS could be exceeded in some cases. Secondly, the data had to be staged to a
distribution staging area and too many concurrent nfs copies to disks resulted in severe

degradation of the nfs throughput which is notoriously slow to begin with. Some factors
contributing to the nfs poor performance were due to a maximum of eight group ids that
can be sent and an nfs feature that locks directories until the files are opened. Replacing nfs

by FTP should improve the throughput by 2 or 3 times. As with nfs, the number of
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concurrentFTPsmustbe limited in orderto achievea goodperformanceandscheduling
becomesimportant.

Wheneverafile is requestedfor distributionanOracledatabaseis searchedto determineif it
resideson thedistributionstagingareaandto identify its physicallocationon thestaging
area. The accessto thisdatabasewascausingsubstantialdelays(minutes)andtheSQL
codehadto beoptimizedin theDADSsoftwareto achievebetterperformance.Duringthe
latesttests,theSGI4D/440VGX computerhostingthedatabasewasCPUboundandthe
DAAC is investigatingtheprospectof acquiringamorepowerfulmachineaswell asmore
optimalwaysof accessingthedatabases.

The Stageserverrole is to group files belongingto the samefamily sothat they canbe
submittedto Unitree asa singlebatch. This improvesthe overall performanceof the
systemby minimizingthe numberof mounts/dismounts.Thefiles selectedthat resideon
the sametapeare read with a single mount. Unitree philosophy is to have full data
transparencyandtheusersshouldnotbeawareof thephysicallocationof the files. This
conceptmaybefine with usersbut is completelyinappropriatefor systemadministrators,
developers,andtesters.If thephysicallocationwereknownthestageservercouldgroup
requestswith files residingon thesamemediaandschedulethestagefrom variousorders
to optimizetheretrievalthroughput.

An importantparameterin designingthearchitectureof thesystemis thevolumeof datato
beingestedanddistributed.Howeverit is alsonecessaryto havegoodestimateon thesize
of thefiles. A systemwith manysmallfileshasmoreoverheadthanasystemof thesame
sizecomposedof largerfiles. With smallfiles,moretimecanbespentsearchingthefiles
on tapesthanactually readingdatafrom tapes. Thesizeof theordersmustalsobewell
estimatedin advance.Filesbelongingto thesameordersareusuallystagedto distribution
stagingareaprior to beingcopiedto mediaor madeavailablefor ftp transfer. If thesizeof
theordersareunderestimatedthedistributionstagingareamaybetoosmallcreatingdelay
andconfusionat theoperationlevel.

Ordersareplacedto theGSFCDAAC via theIMS. Datacanbe requestedto beavailable
over the network (ftp request)or distributedon mediasuchas4 mm, 8 mm, or 9 track
(mediarequest).With anftp request,thedataareautomaticallystagedto disksto becopied
immediatelyandtheuseris notifiedby E-mail. TheUserhas3 daysto transferthefile(s)
overtheircomputer.As thenumberof requestsincreasesthespaceneededto stageftp may
becomesolargethatthe3 dayspolicy maybecut tojust a few hoursandmaynot be long
enoughfor theusers.Sendingdatato usershasotherproblemssuchassecurity,privileges
andavailabilityof userdiskspace.

Operation

Oneimportantrole of theGSFCDAAC is thedisseminationof thedatarequestedto the
scientificcommunity.With respectto SeaWiFSonly,40GB areexpectedto bedistributed
eachday. To processthis volumeof datamostfunctions havebeenautomatedby the
DADS software.However,in thisenvironmentit is notunusualfor somethingunexpected
to occur (e.g. bad tape) and the operatorsmust identify, and rectify theseproblems
manually. This canbetime consumingandonelessonlearnedwasthatoperatorsneeded
more tools to bemoreproductive. Thesetools arealsousedto monitor the system,its
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resourcesandtherequests.Thetoolsmustbedefinedby theoperatorsanddevelopedby
programmers. There is a tendencyfor developersto design software without fully
understandingthe needor operationconcept. This can result in a product that is too
complicatedto use,too cumbersome,or doesnot meettheneeds.Toolswere partof the
preliminarydesignedbut thescopeof thetaskmayhavebeenunderestimated.Someof
thesetoolsarealsodifficult to identifyuntil youhavearealsystemin place.Without these
toolstheoverallproductivitycanbegreatlyreduced.

Anothermajorchallengein buildinga systemsuchastheGSFCV0 DAAC, is to designit
from the beginning with operability, condition monitoring, error recovery, and
performance. Theseaspectsareoften neglectedasa project startswith sometype of
prototypingwheretheemphasisis on functionality.

Creatingthedatarequestedby theusersis not theonly task. Tapesmustbe labeled,tape
contentsverified, documentationmust accompanythe order, and everythinghasto be
boxedandmailed. All thesestepscanbemanualintensive,time consuming,andmustbe
streamlinedin orderto beasefficientaspossible.Without theright proceduresandtools,
operatorscanspendalot of timeperformingthesetasks.Thiscouldresultin adegradation
in qualityaslesstime is spentmonitoringthesystemfor unusualevents.To minimize the
risk of inadvertentlyswitching tapesfor different orders,all tapesare labeledwith bar
codesandscannedby barcodereaders.Mailing labelsareprintedwith identicalbarcodes
to insurethatthecorrecttapeis sentto theresearcher.

Not all therequestsareenteredelectronicallyvia theIMS. Someusersstill needto order
datasetsover the phoneor needassistance.To supporttheusers,theDAAC hasa User
SupportOffice (USO). TheinteractionbetweenUSOandtheoperationgroupis important.
Lackof communicationbetweenthesetwo groupsor anyothergroupswithin the DAAC
would resultsin deteriorationof the serviceprovided to the Scientific community. In
additioninformationthatareoftenneededby theresearcher(e.g.statusof order)shouldbe
availableon-lineto minimizetheworkloadof theUSOstaff.

The GSFCDAAC is a serviceorientedorganizationandassuchhastheresponsibilityto
provide the bestproductto users. To help to achievethis goal, a quality teamhasbeen
createdat theDAAC. Itsprimaryroleis to identifyquality issuesandto suggestsolutions.
A strongemphasishasbeenplacedon quality issuesthat mostly impactexternalusers.
This groupwasestablishedafterdiscoveringthatblank/badtapeshadbeensentto users.
Oneof thefirst tasksof thequalityteamwasto reviewcomplaintswithin theDAAC andby
our customers.Then,startingfrom theoperationlevel, the DAAC processeshavebeen
reevaluatedto identify deficienciesandproposesolutions.Forexample,to precludeGSFC
DAAC from sendingbad/blanktapes,a directoryof thetapeis compiled. Thissolutionis
timeconsumingbecauseit takesthesameamountof timetocreatethetapeasto readit and
generatea directory. Otheralternativesareto readonly thefirst recordsorgeta directory
of tapesrandomlyselected.CapturingI/O errorsduringthecreationof thetapeis another
wayof insuringthequalityof thetapes.8mmand4 mmhavearead/verifyoperationsafter
awrite operationthatcouldguaranteethedatais storedproperlyonthemedia.Theproblem
is that the I/O errors are reportedat the bus level only and when severaldrives are
connectedto the samebusit is not alwayspossibleto determinewhich drive hadan I/O
error. 8 mmstackershavealsobeenpurchasedto minimizehumaninterventionandreduce
therisk of errors. As simpleasthesefunctionsmaybe,examiningtheprocessesin details
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hasrevealedthat their implementationis usuallytoo complex,inefficient andfilled with
unnecessarymanualstepsthatslowsdowntheperformance.

Testing

The GSFC DAAC has conducted numerous tests on the V0 System to measure the
throughput of its peripherals running separately or concurrently. Basic functions such as
ingest, stage, ftp have also been benchmarked in order to estimate the overall performance
of the DAAC and to identify bottlenecks and limiting factors. These measurements have
been summarized in Figure 6. The numbers listed in Figure 6 represent the best values
obtained on a system that was not busy. The distribution tape drives (4mm, 8mm, and 9
tracks) transfer rates varied with the size of the files copied. Writing a large number of files

on tapes with the tar format was found to be faster than copying the same data on the same
drive using dd command. Currently, the only mechanism to transfer data in and out of the
Unitree cache is via nfs or ftp. The best throughput of a single file transferred was
measured at 1570 KB/s with ftp and 430 KB/s with nfs in local host. The ftp and nfs
throughput is a function of the number of concurrent transfers as illustrated in Figure 7 and
Figure 8. Having too many ftps or nfs running at the same time can reduce considerably
the overall throughput. If the files reside on the same disk, there may also be some disk
contention. Compression and decompression are CPU intensive operations that may create
a bottleneck. As expected these operations are executed faster on the SGI Challenge L than
on the SGI power series (see Figure. 9). Several compressions or decompressions
running simultaneously will contend for the CPUs and potentially the disk I/Os resulting in
degradation in the overall individual compression/decompression transfer rates. A
hardware solution for compression/decompression would alleviate this problem. The
GSFC DAAC has investigated for such a hardware board, but in vain. The stage
operations have been tested using the RSS-600 Metrum Automated Tape Library (ATL). It
is difficult to measure the throughput of these operations because they depend on the size of
the files retrieved and the position of the files on the tapes. Using a large file (270 MB)
positioned at the beginning, in the middle, and at the end of the tape it was found that the
overall effective transfer rates that include all the overheads (pickup time, load time, time
for Unitree to read header, search time and read time) was respectively 545 KB/s, 604
KB/s, and 612 KB/s. These rates are roughly one third the native rates of the Metrum
drives. These tests were for a large file and reflect best case scenarios. The latest tests
conducted during several hours with 3 Metrum drives show that with 30-200 MB files the
transfer rate was around 170 KB/s per drive. Even with multiple drives (5), this can

become a bottleneck and it is important to schedule these stage operations in order to
minimize the number of mounts/dismounts and therefore maximize the overall throughput.

In addition to these individual tests, GSFC DAAC has conducted "mini-tests" each time a

new version of the DAAC was released. The initial objective of these mini-tests was to
demonstrate that the center could process 40 GB/day of SeaWiFS data. After conducting
the first mini-test it became apparent that the goals of these mini-tests should be expanded.
For instance, software bugs which could occur only when the system was under a heavy
workload, were discovered. The mini-test was in itself an extension to thorough testing

performed by an independent test team. These mini-tests also contributed to identify
deficiencies in operation procedures. This resulted in increase productivity and improved
the overall quality of the data ingested and distributed. The problem associated with these
tests is that the operations are delayed while they are conducted. However the benefits

outweigh the drawbacks.
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A 16 hour test was conducted on Tuesday, December 13, 1994. The primary objective of
this test was to demonstrate that the GSFC DAAC could distribute 40 GB of SeaWiFS

orders each day. No ingestion was processed during this test. The total number of orders
and total volume of orders processed exceeded the target goal for both standing orders and
random orders. During the test, the DADS software proved to be very robust. All the
SeaWiFs test orders were completed more than 3 hours before the end of the test. During
the test, all data copied from the Unitree cache to the distribution staging area, were
transferred at the speed of the nfs because the disks were nfs mounted This is currently the
main bottleneck in the system. However, preliminary tests have shown that by using ftp,
the transfer rates between the Unitree cache and the distribution staging area should be 2 or

3 times higher

Hardware

GSFC DAAC bought hardware peripherals (disk & tape drives) at a discount price from
third party vendors. The initial saving was not always a good investment as the DAAC
system staff had to work very hard to integrate the peripherals. This distracted the system
engineering from other urgent tasks, increasing system downtime, and generally caused
grief to developers and operators. However, because staff time and system downtime do
not get accounted directly we were able to procure significantly more disk capacity than
otherwise. Another risk associated with purchasing peripherals from small third party
vendors is that they are more prone to go out of business and with them go the warranty.
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The GSFCDAAC experiencedseriousnetwork throughputwith its Scienceproducers.
After someinvestigation,it wasdiscoveredthatolderroutersandbridgescouldnothandle
the loadof EthemetandFDDI,andhadtobe replaced.

Unitree

To automate the migration and staging operations between the robotic devices and the
magnetic disks, the GSFC DAAC is using Unitree. At the time of the selection process,
Unitree was the only product that fulfilled some of the requirements of the version 0 GSFC
DAAC. The initial design of the DADS was to read files directly from Unitree cache and to

copy them to the distribution media selected by users. On several occasions, files that were
needed for distribution were purged from the disk cache by Unitree before they could be

copied to tape. Another problem associated with Unitree is its poor performance in getting
data in and out of its cache. The GSFC DAAC had to resort to developing and managing a
second cache (i.e., various disk staging areas) to avoid the problems listed above. The

duplicate cache increased the complexity of the DADS software and is expensive in terms
of additional disk space needed. Having an Application Program Interface (API) would
have been very useful in the development of the DADS software. Titan/Avalon recently
delivered an API for Unitree but it was too late for the project to incorporate it and be ready
for the SeaWiFs launch

One of the main drawbacks of Unitree is its lack of robustness. The GSFC DAAC has one

person dedicated to monitoring Unitree at all times. This is not unusual as we discovered
by talking to other Data Centers. This is a serious problem during the weekends as
ingestion and distribution were disrupted because of problems related to Unitree and there
is no one to monitor it. Unitree has come a long way, and its new version is more
thoroughly tested and provides added functionality. However, it has not yet reached the
maturity where it can run unattended, and it is still very expensive.

There are other issues that have been reported to the last Unitree users' group meeting held
at GSFC on November 9-10, 1994. Most of them are related to inadequate documentation,

cryptic error messages, lack of monitoring and administration tools, and no mechanism to
capture soft errors detected by the drives during a read or write operation. This latter
function is important as an increasing number of soft errors is an indication that the media
might be degrading and that a new copy of a tape should be made. Because this function is
not available, GSFC DAAC is currently monitoring the number of mounts/dismounts for

each tape and copying tapes after a set number of mounts.

The overall performance of Unitree has been measured during the numerous tests that the
DAAC conducted. In particular the stage operations were identified as a major bottleneck.
The Metrum drives were benchmarked to read at 1.6 MB/s from UNIX. The same tests

running with Unitree show a degradation of an individual Metrum drive to 1 MB/s in the
best case scenario. When an ATG drive from the Cygnet jukebox was doing I/O at the
same time as a Metrum drive the transfer rate of this later drive was reduced by at least half.
All these tests were conducted with a system that had no activity.
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Conclusion

The V0 System of the GSFC DAAC has gained valuable experience from building a few
terabytes archive and distribution system and has demonstrated that it is capable of
distributing 40 GB of data per day. Unitree needs to be more robust and easier to manage.
The DADS software has turned out to be a real challenge. The difficulty being primarily in
developing a reliable product that is fully automated with a good error recovery and with
good performance. The operability, reliability, and performance aspects should all be
major considerations in designing such a system. Special attention should be paid when
buying hardware from third party vendor. It is usually cheaper, but the integration may be
difficult and time consuming. Selecting the right media is very critical because of the high

cost to migrate to another media. With larger and larger archives it is imperative to monitor
media degradation and make new copies before unrecoverable I/O errors.
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Abstract

In October 1992, the NASA Center for Computational Sciences made its Convex-based UniTree

system generally available to users. The ensuing months saw growth in every area. Within 26
months, data under UniTree control grew from nil to over 12 terabytes, nearly all of it stored on

robotically mounted tape. HiPPI/UltraNet was added to enhance connectivity, and later
HiPPIFFCP was added as well. Disks and robotic tape silos were added to those already under

UniTree's control, and 18-track tapes were upgraded to 36-track. The primary data source for
UniTree, the facility's Cray Y-MP/4-128, first doubled its processing power and then was

replaced altogether by a C98/6-256 with nearly two-and-a-half times the Y-MP's combined peak
gigaflops. The Convex/UniTree software was upgraded from version 1.5 to 1.7.5, and then to
1.7.6. Finally, the server itself, a Convex C3240, was upgraded to a C3830 with a second I/O

bay, doubling the C3240's memory and capacity for I/O.

This paper describes insights gained and reinforced with the burgeoning demands on the UniTree
storage system and the significant increases in performance gained from the many upgrades.

Introduction of UniTree at the NASA Center for Computational Sciences

The NASA Center for Computational Sciences (NCCS) provides services to more than 1200 space
and Earth science researchers with a range of needs including supercoi,,vuting and satellite data

analysis. The UniTree file storage management system first arrived at the NCCS on July 6, 1992.
As UniTree was to be the primary system for mass storage management, the existing Convex

C220 was upgraded to a C3240 with four CPUs, 512 megabytes of memory, and 110 gigabytes
of disk. Also included in this initial configuration were 2.4 terabytes of robotic storage provided

by two StorageTek 4400 silos. Although UniTree supported both NFS and ftp as access methods,
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accessto UniTreewaspermittedonly throughftp in order to meet the throughputdemandsof
users of the NCCS's Cray Y/MP (UniTree's primary storage client), IBM ES9000, and
workstationclients.

The massstoragecontractunderwhichConvex/UniTreewasobtainedrequiredthatit beable to
handle32 concurrent transferswhile 132 other sessionssupportedusers. The sizeof files
transferredin acceptancetestswas realistically large, about200 megabyteseach. The initial
ConvexUniTreesystemultimatelyshoweditself ableto managethisworkload,and by thethird
weekin Septemberit hadpassedacceptance.

In thosefirst earlymonths,thegrowthin UniTreeusagewassteady,but manageable.Therewas
about5 GB of newdatabeingstoredeachday,about 10GB a day total networktraffic to and
from UniTree. Ethernet accessto UniTree was slow but generally reliable. As Convex
UltraNet/HiPPI connectivity wasnot yet available,many usersstill preferredthe block-mux
channelspeedssupportedby theMVS CrayStationandcontinuedto usetheIBM/MVS legacy
systemto holdthebulkof theirCray-generateddata.

In thecourseof the next two yearswe would observerepeatedinstanceswhereUniTreeusage
would increasesharplyandcomponentsof thesoftwareandsupportingoperatingsystemservices
would fail undertheheavystrain. Wewould notethat upgradesto theNCCS'sprimary compute
serverwould requirecorrespondingupgradesto the massstoragesystem. We would become
painfully awareof therelative immaturityof UNIX-basedmassstoragesoftwarein generaland
UniTreein specificwhencomparedwith other typesof softwarein their availabilityof toolsand
ability to takeadvantageof high performancehardware. Nevertheless,contendingwith these
obstacles,theNCCS's Convex/UniTree system has evolved to one of the most active worldwide,
often transferring over 100 GB per day and over half a terabyte a week (Figure 3)While
concurrently handling repacking tape activity to free over 150 400-MB tapes per day.

Effects of Compute Environment Upgrades on the UniTree System

With the arrival of UltraNet access for Convex/UniTree in January 1993, the UniTree usage curve
took its first sharp upward turn. It was now routine for UniTree to receive 10 GB of new data

each day, and for the total traffic to reach 20 GB a day. More and more Cray users began to use
UniTree to store their data. In February 1993 the Cray Y-MP/4-128 was upgraded to double its
previous CPU power (Figure 2), and the rate of new data stored in UniTree also doubled to 20

GB/day. By the end of the month more than 7500 silo tapes out of an available total of 10,000 had
been written with UniTree data.

Upgrade h UltraNet and Cray Y/MP

UniTree's growing popularity soon exposed a serious impending threat--we were running out of
storage. The only production-level versions of UniTree that existed at that time did not allow for

more than 10,000 tapes to be managed by the system, but the NCCS UniTree system had
consumed three quarters that amount in its first five months of operation. At our prodding, in
early March 1993 Convex developed and installed a modification to allow for up to 100,000 tapes,
18,000 of them for robotic storage and the rest for vaulting, or deep archive. A second
modification allowing for 36,000 tapes in robotic storage was installed in mid-April. Lesson:
Find out hard-coded limits as early as possible; have them modified if necessary.
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UniTreevaultingandrepackingremainedaconcern.Ourversionof Convex UniTree 1.5 included
an executable to handle repacking, or removing the "holes' from tapes caused by deleted files, as
well as vaulting, or the copying of little-used files onto free-standing tape for deep archive, but
neither function worked properly at our site. It was apparent that the additional 8000 'robotic-
controlled" tapes now defined by software as the top level in the storage hierarchy would not last
for more than a couple of months; without repacking or vaulting, this newly added capacity would

merely postpone the consumption of the entire top-level hierarchy. In addition, the two UniTree
silos were nearly full: without vaulting, most of the additional 8000 tapes in the top level would
not be mounted by robotics but by human operators. On active days, that would amount to
hundreds of manual tape mounts a day to read and write users' most recent data. We did not have
the operations staff necessary for such an undertaking, nor did we want to slow users' access to
most recent files while humans located and mounted the tapes. For these reasons, the NCCS

insisted on fully functional repacking and vaulting.

By April 5, 1993, we finally had a working tape repacker for UniTree 1.5. Immediately we began
to repack in earnest, freeing hundreds of tapes for new data. By April 22,1993, we had also
succeeded in vaulting to free-standing tapes. Working with Convex, we developed utilities that

operators could invoke to write an internal UniTree label on new free-standing tapes, so that they
could be used for vaulting. Operators were soon mounting vault tapes 24 hours a day, in an effort

to keep the silos from filling. Lesson: Include tests for repacking and vaulting along with tests for
all other essential functions in initial acceptance testing.

Upgrade lh Cray C98

At the end of August 1993 the Cray YMPwas replaced by a Cray C98 with six CPUs. Network
traffic to and from UniTree increased to 40 - 70 GB a day, 25 - 35 GB of which was new data.
Due to inefficiencies in tape writing, UniTree 1.5 could handle no more than 24 GB of new data in

the course of a day. As a result, by November 1994 we began to experience periods when the
disk cache would fill and users were unable to store or retrieve any more data. A full disk cache
also meant that vaulting and repacking would come to a halt, eventually causing the silos to fill.
When UniTree ran out of eligible silo tapes for new data it would simply crash. Attempts were
made to facilitate the writing of new data to tape, thereby slowing the filling of disk cache, by

isolating the channel paths used for writing. Patches were installed optimizing the order in which
files were migrated to tape to free disk cache space sooner. Despite these measures, UniTree had
to be scheduled unavailable to users on six separate occasions (totaling 140 hours) for standalone

migration and vaulting. The tape writing inefficiencies were not significantly improved until
UniTree+ 1.7.5 was installed in late March 1994. Lessons: In data-intensive environments with

storage systems already near maximum load, resource plans to upgrade supercomputers must
include provisions to upgrade the storage system if the supercomputer is to be used effectively.

Include performance requirements in acceptance testing.

UniTree Stresses Supportln_

Heavily used mass storage systems stress the supportin.g operating system services and hardware
in ways unlike those of the traditional compute-intenswe applications run on the high-powered
machines now serving storage. In the NCCS's experience, networking and tape subsystems are

particularly vulnerable. Limitations in these systems have sometimes affected UniTree's ability to
write retrievable data.
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UltraNet and HiPPI/TCP

Although it capably handled 90% of Cray-UniTree traffic when it was working well, UltraNet's
history at the NCCS was troubled. Testing it after it first arrived, we discovered several serious

bugs and had to wait for microcode fixes and software patches. (Initially the UltraNet native path
was limited to 16 concurrent transfers; use of the host-stack path would crash the Convex; and the

Convex would hang if UltraNet executables were used for Ethernet transfers.) While waiting for a
patch to fix the latter problem, Ethernet access was disallowed on the port used by the UltraNet
executables, and Ethernet transfers were given a separate port. After these initial bugs were fixed,
a subtle timing problem between Cray and Convex UltraNet transfers intermittently afflicted
transfers, sometimes affecting over a thousand connections a day. None of the vendors involved

had experienced these failures between machines on their own floors. Concerted efforts by Cray
and Convex staff resulted in an improved, but not cured, situation. Lesson: A high-performance
product that works well in the homogeneous environment on your vendor's floor won't
necessarily work well in your heterogeneous shop.

Under UniTree+ 1.7.5 we discovered that an abrupt abort of a single Cray UltraNet transfer would
cause all other UniTree transfers to hang. Such an abort was regularly caused by a Cray user's
deleting an NQSjob that was actively transferring to UniTree. Attempts were made to have NQS
job deletion and the "kill" command terminate processes less abruptly on the Cray, but with mixed
results. Again Cray and Convex staff worked together to mitigate the problem, but their efforts

were impeded by the difficulty in finding expertise from CNT/UltraNet. The problem was
encountered during a period of financial uncertainty for the UltraNet corporation, before its

acquisition by CNT, and many key UltraNet experts had left the company. Lesson: Especially for
relatively small markets and exotic architecture's, your vendor's company or critical staff may go
away; encourage interoperating/dependent vendors to present alternatives.

UltraNet interoperability problems were not limited to Cray/Convex transfers. The UltraNet hub

adaptor repeatedly "autodowned" whenever transfers over a certain size were attempted from the
IBM/MVS mainframe. This and related MVS/UltraNet problems were severe enough that the

planned transfer via UltraNet of over 500 GB of data from the legacy MVS/HSM system to
UniTree was instead detoured via the Cray. Block-mux Cray station transfers moved MVS data
sets from IBM/MVS to Cray disk, then the legacy files were transferred via HiPPI to

Convex/UniTree. While this was not the preferred use for the costly Cray disk, the duration of

this workaround was limited and use of these C98 resources was favored over burdening an
already saturated Ethernet with an additional 500 GB in transfers. UltraNet connections on the
Convex and Cray were ultimately replaced with a HiPPIFFCP connection to an 8 x 8 HiPPI switch

in September 1994. Lesson: Significant systems problems sometimes require creative short-term
contingency plans that use resources in unconventional ways.

Initial experiences with a point-to-point HiPPI connection between Cray and Convex were also
inauspicious. These initial problems were resolved after it was determined that the two vendors

had been adhering to different parts of the standard. Lesson: Despite acceptance of standards,
interoperability between vendors cannot be taken for granted because the standards are subject to
interpretation.
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Network Resource Allocation

Difficulties also arose when, to add a point-to-point HiPPI connection between the Cray and

Convex, we upgraded the ConvexOS operating system from release 10.2 to 11.0. Aiming to
maximize network performance, we increased certain UniTree networking parameters to values

that had produced best results in testing at Convex, and noted promising performance during
testing. Running with these parameters in production mode, we began to see numerous
networking allocation failures, a phenomenon not observed during the HiPPI point-to-point stress

testing. In addition, some users reported discovery of certain UniTree files that had been
corrupted. We immediately reduced the networking parameters values to minimize the occurrence
of the allocation failures. Convex staff identified the problem as a mishandling of the allocation

failures and worked steadily on a patch to prevent the data corruption when these failures recurred.
Evidence pointed to heavy Ethernet traffic as a primary factor in the allocation failures, as the
slower Ethernet transfers tie up resources for a longer period of time than do HiPPI transfers.

After painstaking analysis of the UniTree log files, the NCCS identified and published the list of
all files at risk of having been corrupted by the problem. We installed and tested the ConvexOS
patch as soon as it was available, and, although network allocations continue to fail under heavy
Ethernet loads, the failures are now handled properly with no further data corruption. However,

periods of these network allocation failures result in some user transfers failing, migration and
repacking slowing to a crawl, and the annoying inability to use UNIX pipes and sockets. Lesson:
Stress tests aimed at pushing high-speed interfaces won't catch all systems problems; include
stress tests with lower-performance interfaces in your test suites and add tests for new potentially

concealed problems ("gotchas" )as you find them.

Tape Driver Travails

In February 1994, the discovery was made that a flawed Tape Library Interface (TLI) driver was
causing thousands of consecutive tape marks to be imbedded within UniTree data files, making
those files irretrievable by UniTree. Detection and resolution of the problem was belated because
this behavior apparently occurred only with UniTree 1.5, and not with any other application. The
workaround for the excessive-tape-mark problem was a Convex-written utility designed to wade
through the reading of up to half a tape's worth of tape marks before reading data. Attempts to add
this tolerance to UniTree's tape system failed because other UniTree processes still timed-out
waiting for the files to be read. The suspect driver also caused some internal tape labels to be
overwritten by tape marks after the tapes had been written with data. Some of these tapes were
recoverable simply by re-labeling them (sans end-of-tape mark), but large blank areas following
initial tapemarks on other tapes made the data beyond unreadable. With assistance from Convex,
we copied and reconstructed these tapes manually. Installation of the patched tape driver, when it
became available, ensured that no new tapes would be written with either of these problems.

Lesson: Mass storage applications may reveal system flaws not exposed by other testing;
encourage vendors to include characteristics of mass storage systems under load in their system

quality assurance test suites.

Also troublesome were problems eventually attributed to the interaction between an older Convex
TLI driver and our freestanding Memorex tape drives, which were used to write least recently used
files to operator-mounted tapes. 7.5 percent of tapes written on the Memorex drives with this
older version of the TLI driver were discovered to have one or more "null bytes" prepended to the

beginning of data blocks. The additional imbedded bytes prevented UniTree's retrieving many
files on tapes with this problem. The Convex-written utility that enabled the retrieval of files with
embedded multiple tape marks included provisions to retrieve files with "null bytes" as well. This

transparent handling of spurious prepended null bytes was successfully added to a customized-for-
NCCS version of UniTree tape executables. While the exact cause of the extra null bytes has not
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beenpinpointed,evidencesuggeststhatdifferencesin interpretation of the FIPS-60 standard was a
factor. A more serious problem with no known cause occurred on 199 of 27,000 Memorex-
written tapes (i.e., fewer than 1 in 1000): entire blocks of data were missing. UniTree retries
unsuccessful writes (on a new tape, if necessary); apparently the driver had not notified UniTree of
some unsuccessful block writes. Affected files could not be recovered at all; if a driver problem
had caused something extra to be written to UniTree tape, a method could be devised to reconstruct
users' files. But there was no way to reconstruct missing data blocks that had no copy on disk.

The Tape daemon/ACSLS silo software saga

As the data under UniTree's control increased, so did the number of requests to retrieve data from
UniTree tape. The Convex's tape daemon, used to allocate and deallocate tape drives, was
frequently overwhelmed by the load, and communication timeouts and failures between it and the
STK ACSLS silo-control software abounded. UniTree 1.5 aggravated the situation considerably
by re-requesting the entire list of unsatisfied tape mounts every 2 minutes. There was some
discussion about differences in packet addresses and versions being used by the two vendors, and
engineers made numerous modifications to both ACSLS silo software and the tape daemon in an
effort to mitigate this problem. In addition, the Sun server running the ACSLS silo software was
also isolated on a private subnet to eliminate effects of extraneous network traffic on tape
daemon/ACSLS communications. Ultimately we were forced to disallow the UniTree "stage"
subcommand, which users had been using (and abusing) to request scores of tape mounts
simultaneously.

The measures above have significantly reduced the frequency of severe tape daemon/ACSLS
communications failures, but another intermittent tape daemon problem persists. Several times a
week the tape daemon exhausts its available file descriptors and must be killed and restarted,
causing loss of the state of current tape drive allocation and often requiring careful monitoring to
restore normal tape allocations while ensuring minimal impact on UniTree. The problem's cause
remains elusive after some investigation, and Convex has elected to use its resources to work on

the ConvexTMR system which will replace the tape daemon instead of pursuing the file descriptor
problem. Delivery of the TMR replacement has been delayed, resulting in some frustration at the
prolonged exposure to tape daemon shortcomings--but also some solace in knowing these
resources are being applied to resolve remaining TMR problems before its insertion into a
production environment.

Science User-Driven Storage System Performance Requirements

In early summer 1993, the NCCS UniTree system was handling about 20 GB new data per day,
with some effort. We anticipated delivery ofa Cray C98 with more than twice the CPU power of
the Cray Y/MP at the end of the summer. The NCCS's users and staff expressed concern about
the ability of the UniTree system to handle the additional storage load from the C98. Convex
asserted that with the right hardware and software configuration, the NCCS would be able to meet

the users' requirements. Science users were canvassed to determine specific mass storage needs
for the foreseeable future (in essence, until augmentation or replacement of the C98). Their
responses formed the basis of our acceptance requirements (Table 1) for the upgrades proposed by
Convex and the project integrator, FDC Technologies. Although performance requirements

350



appearedstrenuouscomparedto productiontraffic in summer1993,we havesubsequentlyseen
many instanceswhereproductionusageapproachesthe peakloadsartificially sustainedduring
acceptancetesting.

Reliability:
• The Convex/UniTree system must be available 95% of the total scheduled time as

well as 95% of the prime shift

• No data loss is acceptable
• Performance and reliability requirements must be measurable within a normal

production environment

Table I a: Acceptance Requi remen ts-- Rel iabili ty

Performance (Phase I):

Store (put) and migrate 85 GB/day; retrieve (get) 300 GB/day from disk and tape, and
free 85 GB/day through repacking and vaulting, all operations simultaneously
occurring
Demonstrate 96 concurrent transfers of 32 MB each plus 64 "idle" sessions (doing a
"dir" or "pwd")
Sustain an average aggregate transfer rate of 9.75 MB/sec

Demonstrate a misration rate of .98 MB/sec

Table lb: Acceptance Requirements--Performance (Phase 1)

Performance (Phase 2):

• Store and migrate 100 GB/day, retrieve 300 GB/day, and free 100 GB/day through
repacking and vaulting, all operations occurring simultaneously

• Sustain an average aggregate transfer rate of 13 MB/sec

• Demonstrate a misration rate of 1.32 MB/sec

Table lc: Acceptance Requirements--Performance (Phase 2)

Acceptance Testing

The proposed configuration included a Convex C3800 series machine running Convex/Unitree+
1.7.5. It became clear that peripheral hardware resources required for acceptance testing
(UltraNet/HiPPI or HiPPI/TCP connections to the Cray C98, multiple robotic tape drives and
controllers) were only available in the NCCS production environment. The NCCS user
community was briefed on the need to make the UniTree production system unavailable during
acceptance testing; although they preferred 24-hour17-days-a-week access to UniTree, they
recognized the sacrifice would result in longer-term benefits. Testing progressed more slowly than
anticipated, complicated by the critically saturated UniTree 1.5 production system and problems
discovered in then-Beta UniTree+ 1.7.5 software. Acceptance tests completed in early June,
1994, using production-released Convex/UniTree+ 1.7.6. Performance results are shown in
Tables 2 through 5.
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Test 1

ftp "puts"
(stores)

migration rate

ftp "gets"
(retrieves)

vault./repack
rate

1.5 Production
Observed

58.3 GB/day
(0.691 MB/sec)

36.0 GB/day
(0.427 MBlsec)

34.1 GB/day
(0.404 MB/sec)

20 GB/day
(0.237 MB/sec)

Phase 1

Requirements
85.0 GB/day

(1.007 MB/sec)

85.0 GB/day

(1.007 MB/sec )
300 GB/day

(3.56 MB/sec)
85.0 GB/day

(1.007 MB/sec)

UniTree+

1.7.6 Testing
1.183 MB/sec

1.016 MB/sec

11.558 MB/sec

1.0528 MB/sec

Table 2: Performance test #1

Phase 2

Requirements
100 GBlday

(1.185 MB/see)
100 GB/day

(1.185 MB/sec)
300 GB/day

(3.56 MB/sec)
100 GB/day

(1.185 MB/sec)

Test 2 1.5 Production
Observed

total ftp
sessions

ftp transfer
sessions

"idle" ftp
sessions

128

32

96

Phase 1

Requirements

160

96

64

UniTree+

1.7.6 Testing

168

100

68

Phase 2

Requirements

none

Table 3: Performance test #2

Test 3

aggregate
network
transfer

rate

1.5 Production
Observed

6.5 MB/sec

Table 4: Performance test #3

Phase 1

Requirements
9.75 MB/sec

(150% of
observed 1.5

baseline; test

system must
include tape
l r _vi_)

UniTree+

1.7.6 Testing
12.7417 MB/sec

Phase 2

Requirements
13.0 MB/sec

(200% of
observed 1.5

baseline;test

system must
include tape

activity)
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Test 4

migration
rate

1.5
Production
Observed

0.658 MB/sec
observed on a

quiet system

Phase 1

Requirement
s

0.98 MB/sec

(150% of
observed 1.5

baseline)

UniTree+
1.7.5

Testing
1.33 MB/sec

UniTree+
1.7.6

Testing
1.016 MB/sec

Phase 2

Requirement
$

1.32 MB/sec

(200% of
observed 1.5

baseline.)

Table 5: Performance test #4

Current Storage Hardware

The machine that completed acceptance was a 3-CPU Convex C3800 configured with 2 I/O bays.
The C3830 has double the memory of the C3240 and more than twice the I/O bandwidth. The
addition of the second I/O bay increased the maximum number of channel control units (CCUs)
from 8 to 16; 12 CCUs are currently installed, including 2 enabling HiPPI/TCP connections to the

Cray C98. Figure 1 shows this storage configuration.

UniTree disk cache has increased from the initial 50 GB to 155 GB for user data. We also obtained
40 GB of disk for RAID, after experiencing disk failures that caused repeated disk process crashes

days later, during attempts to access afile with a fragment on the failed disk. Lesson: RAID has
successfully protected user files from disk hardware problems on a number of occasions, and has
proven a valuable investment we consider to be worth the reduction in space available for user
files.

NCCS robotic storage has increased to 5 STK 4400 silos with 24 transports. Eight operator-
mounted tape drives have been added for vaulting of least-recently-used files. 28 of these 32
transports have been upgraded from 18-track to 36-track. In addition, 22,000 cartridges of 3480
and 3490 tapes are being replaced by 3490E cartridges, which hold approximately 800 MB per
tape. Movement of existing files to denser media is accomplished by creative use of repacking.
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Cray - Convex/UniTree System

Convex C3830
3 CPUs, 120 MIPs per processor 4.5 MB/sec x 8
2 gigabyte memory
1 ion I/O bay 40 MB/sec x 4

FDDI
10 MB/sec

StorageTek ACS
4 4410 silos
1 9310 Powderhom silo
24 cartridge tape drives (3490)

330 gigabytes disk (formatted)

4.5 MB/sec x 2

HiPPI/TCP

100 MB/sec

1 MB/sec

Ethernet

4 StorageTek 3490 freestanding
cartridge drives

Cray C98
5 CPUs, 1 gigaflop per processor
256 megawords central memory
512 megawords SSD

100 MB/sec HiPPI switch

8X8

Figure 1: Cray - Convex/UniTree Configuration

Conclusion

The Convex UniTree system in production use at the NCCS today has seen significant
improvements since its installation in 1992, and today meets or satisfies most of our expectations,
and most of our users' current needs. From a system that could comfortably handle only 25 GB in
transfers a day in early 1994, we now routinely handle over I00 GB/day with a high degree of
user confidence. Robotic storage capacity has increased an order of magnitude, from 2.4 to 24

terabytes, with minimal down time due to problems. We are now beta-testing a release of UniTree
with features that anticipate our future requirements, unlike 12 months prior when we anxiously
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awaited a release that would meet our current needs. The process of reaching this current state,
however, was not without considerable problems and frustrations. From experiences gathered

during the last two years, three themes seem to dominate:

Users' input can be a valuable resource. Their input on future requirements is essential for
planning and justifying future acquisitions and for performance requirements in acceptance
testing. Our users' feedback and cooperation during critical load times and acceptance testing
was crucial to the evolution of performance and capacity improvements on our floor today.

Standards don't guarantee interoperability. At least four problems cited above resulted from
several vendors' different interpretations of standards. The standards/interoperability issue
also applies to the mass storage software itself. UniTree was among the first UNIX-based
mass storage systems to be ported and licensed on a wide variety of platforms. In light of
delays on bugfixes and new releases from the previous UniTree originator, and demands for
improvement from their customers, individual vendors have made significant modifications to
UniTree. Some of these modifications affect a site's ability to move their UniTree tapes and
databases to a different vendor's platform. Leveraging strength in numbers, the UniTree

Users' Group has gotten vendors and the new originator of UniTree to agree to work together
to resolve portability issues.

Stress testing: Include high performance and low performance interfaces in stress testing, and
add tests for "gotchas" to the suite as new problems are discovered. If it's possible in your
environment, have vendors run acceptance testing with your equipment on your own floor,

because it's virtually impossible for vendors to duplicate your environment. If practical, set up
a test instance of your mass storage system and Beta/stress test new releases so that problems
are detected and resolved before the product is installed on your production system.

The NCCS's science users project the need to transfer 2 terabytes a day by 1999. Up-and-coming
high performance media, networks, and the like will achieve the rates required by our high-
performance computing users, although the lag between the introduction of new hardware and the
operating system and mass storage software's full utilization of its capabilities remains a concern.
Our current beta test of Convex UniTree+ 2.0, which better exploits hardware via its enhanced

tape resource configurability and multiple migration writes, should provide some insights on
system behavior with higher-performance peripherals. But the increased sharing of data fostered
by national and global information infrastructure efforts is already broadening the needs and the
nature of the NCCS user community. Consequently, the NCCS is investigating interim methods
to accommodate the "long haul," lower-speed needs of numerous remote users while sustaining
high levels of service to local high-performance computers, although we anticipate researchers'
and vendors' eventual development of more elegant means to handle these divergent needs.
Current NCCS study involves creative use of UniTree families, tape types, and callout scripts to
control the impact of many simultaneous remote sessions on high-demand needs of Cray
processing. Our storage system progress to date, although not without its turbulence, induces
great optimism about our future ability to meet the needs of both our lower-speed and high-
performance science users, whose research activities drive one of the most active mass storage
sites world-wide.
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Total UniTree Terabytes

15

10

5

0

upgrade to Cray Y-MP 8 upgrade to UnWree 1.7.5

upgrade to Cray C98/6-256 and Convex C3800

[] Terabytes offline

• Total terabytes

ART, EMS - 1/6/95

Average file size = 14.0462 MB

Figure 2: UniTree storage growth at the NCCS
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Weekly UniTree Traffic
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Avg stored: 43.63 GB/day avg retrieved: 31.03 GB/day (averages since 10/1/94)

Figure 3: UniTree weekly network activity
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NSSDC Provides Network Access to Key Data via NDADS

Abstract:
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The National Space Science Data Center (NSSDC) is making a growing fraction of its most
customer-desirable data electronically accessible via both the local and wide area networks.
NSSDC is witnessing a great increase in its data dissemination owing to this network
accessibility. To provide its customers the best data accessibility, the NSSDC makes data
available from a nearline, mass storage system, the NSSDC Data Archive and
Dissemination Service (NDADS). The NDADS, the initial version was made available in

January 1992, is a customized system of hardware and software that provides users access
to the nearline data via ANONYMOUS FTP, an e-mail interface (ARMS), and a C-based

software library. In January 1992, the NDADS registered 416 requests for 1,957 files.
By December of 1994, NDADS had been populated with 800 gigabytes of electronically
accessible data and had registered 1458 requests for 20,887 files.

In this report, we describe the NDADS system, both hardware and software. Later in the
report, we discuss some of the lessons that were learned as a result of operating NDADS,
particularly in the area of ingest and dissemination.

1. Introduction

The focal point of the NDADS is the mass storage components of two Cygnet jukeboxes,
each configured with two SONY 6.5 gigabyte optical disk drives. The two jukeboxes

provide the NSSDC 1.2 terabytes of nearline optical disk storage. A VAX cluster
computer configuration drives the two jukeboxes, as well as providing network
connections to the NASA science community including NSI-DECnet, Internet and US
SprintNet. Although the numbers of data sets in the space physics and astrophysics areas
are comparable, about 90% of the NDADS data, by byte count, are astrophysics data.
These data include a mix of data currently arriving at NSSDC, plus selected data being
promoted from NSSDC's offline archives to NDADS. To date, NSSDC has focused on
loading space physics and astrophysics data to NDADS. Key space physics data sets
presently available from NDADS come from the IMP-8, ISEE-3, DE-I and 2, Hawkeye,
Yohkoh, and Skylab missions. Key NDADS-accessible astrophysics data sets typically
include the basic observation data files and accompanying ancillary files (calibration, etc.).
The astrophysics missions with data in NDADS are IUE, ROSAT, IRAS, Ginga,
VELA5B, HEAO- 1 and 2, OAO-3 and the Astronomical Data Center Source Catalogs.

The NSSDC developed the NDADS to support the following requirements:
(1) the loading of data files to nearline storage and of associated metadata files to an

inventory database;
(2) user access to the (relational) inventory database;
(3) user access to and retrieval of data;
(4) data security;
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(5) userunderstandingof thesystem(throughonlineuserguides,etc.);
(6) aggregationof filesaccordingto individual project needs;
(7) capability to support additional types of mass storage devices as acquired.

Item 6 on file aggregation is a special concept, whereby related files are grouped into
predefined "granules" or "entries." Users are thereby able to request, for example, an
astrophysical observation by unique granule/entry ID, and have the system retrieve and
stage all the relevant files without the user having to specify each one. This feature makes
NDADS more than a typical "file server u system.

The NSSDC must meet several obligations as part of its mission as an archive. One of the
primary obligations is that the data must be kept safe and secure. Data integrity is an
important requirement as well. Of equal importance is our obligation to disseminate data
from the archive. For its own sake, the NSSDC must determine ways to archive the data
that are scalable and cost effective. It is important to emphasize that the NDADS is much
more than a file server, and hence the reason for the development of the specialized
software system, discussed in section 2. Functionally and operationally, NDADS can be
divided into two NSSDC activities, ingest and disseminate: In sections 3 and 4, we
discuss some of the characteristics and lessons of the ingest and disseminate functions.

2. NDADS Software System

NSSDC developed a specialized software system to manage storing and locating data on
NDADS. The NSSDC Storage System (NSS) software was prototyped in mid-1991 and
experienced a highly successful two year "experimental" public access period resulting in a
second version of the software system completed in 1993. The NSSDC required a system
that would support data stored on multiple platforms (UNiX-like) as well as the
VAX/VMS TM system platform used in the initial system. The resulting NDADS must also
support migrations from the current given hardware and software platforms and mass
storage systems. The current NSS software is written for a VAX VMS TM 6.1 platform
and uses two commercial-off-the-shelf software packages; the SYBASE relational database
management system and CYGNET Jukebox Information Management System (JIMS). It
also uses the Software for Optical Archiving and Retrieval (SOAR) for formatting the
WORM optical platters, a package that was developed at NASA and available through
COSMIC. The modular NSS software is written in C Language to provide us a measure of
portability. A client/server approach was used in the development of NSS, allowing a
client located on a system outside the NDADS facility to access the NSS server on the
NDADS host. The NSSDC also requires a direct applications interface to the NDADS
giving the staff better access and control over the system to increase data ingest throughput.
The NSS direct applications interface is available through a command line interface and C
Call routines.

An important feature of the NDADS is a high level of security and recovery applied to the
storing and staging of data from Storage devices. The core NSS software processes the
data to be stored as part of the transaction management features of the SYBASE. The
'store' transaction is performed in a sequential, 'batch' mode, first storing the pointer to the
data on the mass storage system in the database and then actually storing the data on the
mass storage device. Since the data is 'stored' as a transaction, any failure that occurs
during the store process will trigger the operation to exit and notify the ingest team. Data
granules can be tagged as non-proprietary or proprietary, thus restricting access to certain
individual user accounts. Proprietary data is that data which has not been granted access to

the general public. A complex 'logging' mechanism has been created to track all NSS steps
and are used to monitor problems and performance.
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The modular design of the NSSDC storagesystem allows device specific modules
('fetchers") for new storagedevicesto be integratedinto the systemquickly and with
minimal impacton therest of the code. Each fetchermoduleis expectedto provide a
certainsmallsetof critical servicesto the "masterfetcherM,suchasmountinga volume,
copyingafile ontothedevice,copyingafile outof thedevice,etc. Thesystemis designed
to enabletheNSSDCto addadditionalstoragedevicestransparentlyto theexternalusers
without modificationof thebasesoftwaresystem.Currently,theNSSDChasfetchersfor
theCygnet-SONYWORMjukebox,online magneticdisk devicesand thereareplansto
includeseveralothermassstoragedevices. TheNSSDCrecentlyaugmentedtheNDADS
with aDigital LinearTapejukeboxconnectedtoanSGI Indigo 2/IRIX workstation(1/95).
Figure1showsaconceptualdesignof theNSSsystem.

3. Ingest Lessons

The NSSDC expects to receive and ingest close to a terabyte of data per year beginn!ng in
1996. To meet ingest requirements, the NSSDC has been studying ways to improve ingest
rates. The NDADS ingest process is influenced most by the fact that the nearline system
has been WORM disk-based. This fact results in many idiosyncrasies that drive NSSDC

processes, for example, the slow transfer rates of the disks, the permanence of the write
operation, and the limitation of the number of drives. The ingest process is composed of
more steps than was described in the section 2 as part of the NSS software system.
Typically, the ingest steps are:

1) assemble the data and determine data staging requirements

2) verify the data (check headers, gross bounds checking,...)
3) archive the data to nearline devices using the NSS software

Ingest is differentiated at the NSSDC by whether the dataset is current and arriving directly
(electronically) from a NASA project or if it has been a resident of the NSSDC offline
archive.

3.10ffllne Data

If the data is already in the NSSDC, it is typically one of 80,000+ 9-track 'legacy' tapes in
the archive. In most cases, the data must be converted to files before it is placed in

NDADS. Although this step requires customized software, the NSSDC reuses many
software modules for the data conversion elements. This step can be time consuming
based on the number of errors that are encountered in the dataset conversion process. Data
in the archive has several common characteristics:

• it is always an 'old' dataset, often with limited documentation
• a dataset is typically all on the same media and has a finite size
• responsibility for the dataset is completely the NSSDC's
• it is difficult to predict how popular the dataset will be for electronic

dissemination

• requires a high degree of human interaction to move the data into the archive
In the case of offline data, the NSSDC uses techniques learned from previous data

restoration tasks. It is important to:
1) peer review these legacy datasets before selecting them for placement in the

NDADS

2) vigilantly maintain a schedule for transferring the data to NDADS
3) select datasets that have good documentation to support the dataset

4) pre-determine the amount of verification required for storing the datasets
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5) pre-determine the amount of error correction required before the data is stored
The NSSDC must consider the 'setup' time associated with the above steps as well as the
time spent preparing custom programs for reformatting tape data and data verification. We
have discovered that a significant portion of manpower resources can be absorbed in these

steps.

The NSSDC has reviewed different scenarios involved in ingesting different types of tape-
based data to NDADS. Principally, 4mm, 8mm and 9 track offline tapes have been studied
to determine the length of time involved in ingest. On the VAX cluster, our evaluation
shows that 4mm and 8mm tapes are slower to physically ingest then the 9-track tapes.
However, the set-up time for 9-track tapes is almost 4 times longer than that of 8mm and
4mm tape. The shorter set-up time is in partly due to the fact that the data on the 4mm and
8mm's is newer data and in some type of standardized format. The use of standards such
as FITS, CDF, and SFDU simplifies the data verification phase as well as accelerates the

step of converting to disk files.

3.2 Electronically Delivered Data

The NSSDC has been receiving newer datasets via the network. In these cases, the

projects are still actively collecting data and transfer a processed dataset on a regular basis
into NSSDC disks. If the dataset is delivered electronically, the NSSDC typically is only

required to do basic checks of the data and then copy the data into the nearline system.
Several characteristics make these datasets both easier for the NSSDC to work with and

more difficult to control, for example:
• the NSSDC can review and affect formats of the data prior to their delivery

• both the NSSDC and the project share responsibility for the data
• easier to predict the popularity of a dataset and its eventual electronic

retrieval

• software can be written to completely automate the ingest process, requiring
little human intervention

• difficult to predict the quantity of data that will be delivered to the
receiving/staging disk, thereby making it difficult to cost effectively
determine the size of the disk

As part of the delivery function, the NSSDC contracts with each project a formal
arrangement of delivering a list of what was transferred. These transfer lists are commonly
referred to as Bills of Lading (or BOLs). In 1992, the NSSDC devised a BOL format that
has served as a model for data delivered by other projects. The use of BOLs simplifies the
NSSDC's the ability to cross check data delivered electronically by use of routine code.
This permits us more accuracy and faster ingest into the nearline system.

The NSSDC does rudimentary verification and validation of the datasets before they are
committed to the nearline system. Verification software is written in several programming
languages, usually reusing existing code and often supplied by the data provider. The
minimum set of tests is applied to newer datasets; i.e. check the filenames and header
information, etc... The NSSDC will be working on ways to automate this aspect of data
ingestion during this fiscal year. It is becoming increasingly clear that electronically
delivered data must be spot checked rather than systematically checked given the large

quantities received and the turnover rate from disk to nearline. It is difficult to find the
CPU cycles to review all data received electronically.

The NSSDC staff has experimented with several different ways to schedule ingest and it
remains are most difficult problem. Problems are routinely encountered in receiving
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electronicallydeliver_ datasets,eitherdue to system problems for both the project and the
NDADS or due to network transfer delays. The data flow problem is compounded by
difficulties in scheduling f:ee staging disk space. Electronically delivered data tends to vary
in size delivery-to-deliveiy. To alleviate these problems, it is important to get as much
information on deliver 3' plans from the project and to maintain close communications. The
NDADS ingest staging space is planned to have available three times the maximum size of a
delivery, this allows for potential hardware delays and unforeseen difficulties on NDADS.
Along with scheduling of the ingest staging disks, we have in the past tried to manually
map out the use of the optic_l drives to least impact the users who are retrieving data. This

way we could insure that all of the drives in a single jukebox were not committed to ingest,
thereby prohibiting access to the data for retrieval. This past year, we have developed
selected batch queues controlled by the operating system to eliminate the manual
intervention. This has improved our ingest throughput without affecting retrieval rates.

Many of the processes used to move the data through ingest pipeline are manually executed
and monitored. An ingest team member will manually start one of the steps and monitor to
completion. Following successful completion, another job is started and in some cases the

jobs are performed in the batch queue. In our evaluation, manual pipeline processing
nominally requires at least 4 hours per dataset. By eliminating manual pipeline processing
for several electronically delivered datasets, we have increased the ingest throughput
without affecting the quality of the load. The steps used for automated ingest of the data
are often similar from project to project. The NSSDC is collecting these common steps into
a generic ingest software system that can be customized with appropriate configuration files
and used on any new dataset to be ingested into NDADS. Because of these measures, the
NSSDC shows an increase in ingest rates in 1994, see Table 1.

1994 INGEST RATE IN GB [

IJAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
9.6 10.2 3.5 18.2 4.4 15.3 21.3 35.2 11.5 17.2 32.4 85

TABLE 1.

4. Disseminate Lessons

The NSSDC is committed to providing its users, both in-house and outside community,
four ways to access the NDADS archive:

1) viacommand line interface
2) via C callable routines
3) via FFP service
4) via an E-mail interface

The first two methods are used principally in-house to directly manipulate the nearline
mass-storage systems for better management of ingest and disseminate functions on the

NSSDC's behalf. Methods 3 and 4 are provided principally for the outside community.
The NSSDC Automated Retrieval Mail System (ARMS) provides an E-mail interface to the
NDADS archive. Users send an E-mail request to the account
archives@nssdca.gsfc.nasa.gov. Within the message, users specify the need for
information or data files by adhering to a fixed protocol for the content of the E-mail SUBJ
line and, for data requests, by specifying granule ids in the body of the E-mail message.

The ARMS Users Manual, detailing the protocols, may be obtained by specifying
MANUAL as the subject of the message and leaving the message body blank. The E-mail
system is very popular and has supported the distribution of over 260 GBytes of NDADS
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data. In 1995,wewill beworkingonprovidinga morefault-tolerantandmodularARMS

system to our customer community.

The E-mail system has to its advantage a simplistic interface, but it also requires users to
understand the NDADS granule-naming conventions and the granule-file hierarchy.

Because of this requirement the NSSDC developed an FFP server to NDADS that makes
the full NDADS archive appear to users as a massive FTP-accessible disk farm. The FFP
interface allows the NSSDC more versatility in connecting to client/server based user
interfaces. One advantage of the FTP service is that NDADS files now have Uniform
Resource Locators (URLs). The FTP service incorporates well into World Wide Web
pages developed at the NSSDC by space physics and astrophysics disciplines. These Web
pages allow retrieval of NDADS data without specifically knowing granule names.

5. Conclusion

The NDADS has been developed to serve the specific needs of the NASA science

community. It combines specialized hardware with customized software to significantly
enhance the power of the NSSDC scientific database system. The success of this facility
can be measured in several ways: the number of requests for data, the turnaround time,

capacity, and convenience to the community. Available 24 hours a day every day, NDADS
currently satisfies in excess of 1000 requests per month in an average of less than ten
minutes. The NDADS service represents three-quarters of all NSSDC data requests.
NSSDC believes its NDADS nearline data management environment is evolvable to exploit

future changes in both hardware and software. By providing a well-constructed and secure
infra-structure, NSSDC will be able to meet the future requirements of managing terabytes

of data, cooperatively supporting NASA missions and supporting user interfaces that
rapidly change to best meet the needs of scientists and others on the information
superhighway.

In the future, the NSSDC expects to need additional storage devices to support the growing
archive. The inclusion of the data and storage devices in use at the HEASARC, Compton-

Gamma Ray Observatory and other related archives will be of primary importance to the
NSSDC as well as intriguing in its possibilities of resource sharing across organizations.

Careful planning and consideration will be required to phase-in the future computing
requirements of the data center and not disrupt existing capabilities. The NSSDC will also
consider improved access to the NSSDC data through Wide Area Information Service
(WAIS), World Wide Web (WWW) and related network-based services as well as

software application systems used in-house.
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Abstract

NASA missions, both for earth science and for space science, collect huge amounts
of data, and the rate at which data is being gathered is increasing. For example, the
EOSDIS project is expected to collect petabytes per year. In addition, these archives
are being made available to remote users over the Internet. The ability to manage the
growth of the size and request activity of scientific archives depends on an understanding
of the of the access patterns of scientific users.

The National Space Science Data Center (NSSDC) of NASA Goddard Space Flight
Center has run their on-line mass storage archive of space data, the National Data
Archive and Distribution Service (NDADS), since November 1991. A large world-wide
space research community makes use of NSSDC, requesting more than 20,000 files per
month. Since the initiation of their service, they have maintained log files which record
all accesses the archive.

In this report, we present an analysis of the NDADS log files. We analyze the log
files, and discuss several issues, including caching, reference patterns, clustering, and
system loading.

1 Introduction

On-line scientific archives are an increasingly important tool for performing data-intensive

research. Building a large-scale archive is an expensive proposition, however, and system

resources need to be careflllly managed. To date, there has been little published research

that studies the performance of on-line scientific archives.

The National Space Science Data Center (NSSDC) of NASA Goddard Space Flight Cen-

ter has run their on-line mass storage archive of space data, the National Data Archive and

Distribution Service (NDADS), since November 1991. A large world-wide space research

community makes use of NSSDC, requesting more than 350,000 files in 1994. Since the

initiation of their service, they have maintained log files which record all accesses to the

archive.

In this paper, we present an analysis of access patterns to the NDADS. These analyses

are based on the information contained in the log files. We discuss several aspects of sys-

tem performance, including the performance of several caching algorithms on the recorded

request stream, and the effectiveness of the data clustering used by NDADS. We show that

the request for a file are bursty, and that user requests are bursty. Finally, we present an

analysis of the system load.
Several studies on the reference patterns to mass storage systems have been published.

Smith [12] analyzes file migration patterns in hierarchicM storage management system.

This analysis was used to design several HSM caching algorithms [13]. Lawrie, Randal, and

Burton [7] compare the performance of several file caching algorithms. Miller and Katz

]This work was performed while Theodore Johnson was an ASEE Summer Faculty Fellow at GSFC. This

research is partially supported by grant from NASA through USRA, #5555-19
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havemadetwostudieson the I/O patternof supercomputerapplications.In [9], they find
that muchof theI/O activity in a supercomputersystemis dueto checkpointing,andthus
is verybursty. They makethe observationthat muchof the data that is written is never
subsequentlyread,or is only readonce.In [10],theyanalyzefilemigrationactivity. They
find a bursty referencepattern,both in systemloadandin referencesto afile. Additional
studieshavebeenmadebyJensenandReed[5],Strange[14],ArnoldandNelson[1],Ewing
andPeskin[3], HendersonandPoston[4],TarshishandSalmon[15],andby Thanhardtand
Harano[16].However,all of thesestudiesapplyto supercomputerenvironments,whichcan
beexpectedto haveaccesspatternsdifferentfrom thoseof a scientificarchive.

1.1 Log Files

The NationalSpaceScienceDataCenteris theprimary archivefor all spacedatacollected
by NASA. The NSSDCdistributesits data usinga variety of methodsand media. For
example,onecan requestphotographs,CD-ROMsand tapesfrom the NSSDC.Manually
fillingordersfor datais labor intensiveandhenceexpensive.In addition,serviceisslow.To
reducedatadistribution costsand to improveserviceto the usercommunity,the NSSDC
createdthe NationalDataArchiveandDistribution Serviceto storeelectronicimagesand
data, andservethe dataelectronically.

The archiveconsistsof a two jukeboxesstoringWORM magneto-opticdisks,onewith
a capacityof 334GB, the other with a capacityof 858GB. A usersubmitsa requestby
naminga project, and the filesof the project. Requestsubmissionis mostoften doneby
email, but can also be done using a program on the host computer, and through a new

World Wide Web service. NDADS will fetch the requested files from nearline storage, place
the requested files on magnetic disk, then notify the user that the files are available for

transfer via ftp (alternatively, the files can be ftp'ed automatically). More information

about NDADS can be found by sending an email message to archives@nssdc.gsfc.nasa.gov
with a subject line of "help".

A user specifies the files of interest by naming them explicitly. In general, specifying files

by predicate matching is not possible (although this capability is being developed).

NDADS is an evolving system, and log file collection is part of the evolution. Version

1 logs were recorded between November, 1991 and December, 1993. These logs record the

files requested, the start and stop times of request service, and the name of the requester.
Unfortunately, these log files do not include the file sizes or the name of the media from

which the file was fetched. These log files were intended to aid in monitoring and debugging

the system, not for performance modeling. Many of the deficiencies of the version 1 logs

were fixed in version 2. The version 2.1 and 2.2 logs were collected between January, 1994

to mid-July, 1994. These logs include file size and media name information, permitting a

much more detailed analysis. Version 2.3 logs start in mid-July, 1994 and are still being

collected at the time of this writing (January 1995). These logs include information about
ingest as well as request activity.

2 Caching

When a user requests a file, the file is fetched from tertiary storage into secondary storage

and made available to the requester. The file typically has a minimum residency requirement

(three days in NDADS) to give the requester time to access the file. The archive systems

needs to have enough disk storage to satisfy the minimum residency requirement.
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While thefileisdisk-resident,asecondrequestfor thefile canbesatisfiedwithout fetching
thefile from tertiary storage.Thesecachehits canreducetheloadon the tertiary storage
system,and alsoimproveresponsetimes.

A largebody of cachingliteratureexistswhenall cachedobjectsareof the samesize.
TheLeastRecentlyUsed(LRU) replacementalgorithmiswidelyrecognizedashavinggood
performancein practice,althoughstatisticalalgorithmswith betterperformancehavebeen
proposedrecently[6, 11].

Cachingobjectsof widelyvarying sizesis somewhatmorecomplicated,and hasnot
receivedthe sameamount of attention. If onewants to minimizethe numberof cache
misses,then it is muchbetter to chooselargefilesthansmallfilesfor replacement,because
removinglargefiles freesup morespace.Theoptimal replacementalgorithmfor variable
sizeobjects,with respectto cachemisses,is the GOPT algorithm[2]: Let F be the set of

cached files, and for file f E F, let Nj be the time until the next reference to f and let S]

be the size of f. Choose for replacement the fr C F whose product NI, * S], is the largest.

The GOPT algorithm cannot be implemented (because it requires knowledge of future

events), but it can be approximated. The Space-Time Working Set (STWS) algorithm [13]

approximates GOPT be substituting Pf, the time since the last reference to f, for Nf.

While STWS can be implemented, it also requires a great deal of computation. FoE" this

reason, STWS is often approximated by what we call the STbin algorithm [8]: A file is put

into a bin based on its size. The files in a bin are sorted in a list using LRU. To choose a

file for replacement, look at the file at the tail of each bin and compute its Pf * ,91 product.

Choose for replacement the file with the largest space-time product.

In our caching analysis, we use the LRU, STWS, and STbin algorithms. We assume a

disk block size of 1024 bytes, and set a limit on the number of disk blocks that are available

for caching. We trigger replacement when fetching a new file will cause the space limit to

be exceeded, and we remove files until the space limit will not be exceeded. For the STbin

algorithm, bin i holds files that use between 2 i and 2 i+1 -- 1 blocks.

We execute the caching algorithms on traces generated from the 1994 log files (which

have size information attached). We divide the logs into three month periods, to make the

logs large enough to capture the steady-state hit rates, but also indicate changes in the

access patterns.
The hit rate information is summarized in Table 1. The STWS and STbin algorithms

have much better performance than the LRU algorithm. The STbin algorithm usually

has performance comparable to that to the STWS algorithm, and sometimes has better

performance. One surprising result is the high hit rate (up to 50%) that is possible with a

moderate sized (5 Gb) cache. Given the nature of the archived data, hit rates were expected
to be much lower.

When a file is fetched from tertiary storage, it remains on magnetic disk for at least three

days. For a comparison, we present the disk storage requirements and the hit rates if an

3-day residency is observed, in Table 2. As the table shows, considerable more than 5 Gb

of disk storage is required to satisfy the minimum residency requirement.
The resources required to fetch a file depend on the size of the file. For this reason,

STWS is suboptimal is practice. Most vendors allow the user to tune the caching algorithm

to reduce the penalty paid by very large files. A common technique is to assign to each

file a weight computed as PI * S_ for a constant c <: 1. In Table 3, we list the number
of bytes transferred by each of the caching algorithms. LRU generally transfers the fewest

bytes, closely followed by STWS. In these log files, STbin requires the transfer of many

bytes (STWS transfers fewer bytes than STbin because it has a lower miss rate).
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Disk Blocks
__(lkbytes)

1048576
2097152
3145728
4194304
5242880

1048576
2097152
3145728

--4194304---
5242880

Hit Rate
LRU STWS] STbin
January,1994-March19-94
.144
.243
.288
.309
.320
July,
.173
.248
.271
.302
.327

.234

.314

.341

.355

.364

.195

.267

.337

.349

.360
1994-Se)tember1994

.270 .205

.308 .259

.328 .309

.340 .340

.366 .377

Table1: Hit ratesfor differentcache

Hit Rate
LRU STWSI STbin

April, 1994-June1994
.155
.202
.272
.292
.3O4
October,

.235 .189

.313 .194

.362 .286

.423 .448

.471 .500
1994-December1994

.215 .198

.243 .222

.266 .245

.291 .256

.311 .287

.127

.155

.181

.219

.252

replacement algorithms.

1/94-3/94 4/94-6/94 7/94-9/94 10/94-12/94
hit rate .175 .183 .193 .129

Storage 7.2 Gb 8.4 Gb 14.0 Gb 11.0 Gb

Table 2: Disk storage and hit rates for 3-day residency.

Disk Blocks

1048576

2097152

3145728

4194304

5242880

1048576

2097152

3145728

Hit Rate Hit Rate

LRU STWS] STbin LR:U I STWS STbin

January, 1994 - March 1994 April, 1994 - June 1994

35.0 Gb

30.1

29.1

28.4

27.8

July, i994
56.7

52.7

50.1

4194304 47.4

5242880 46.3

34.9 36.7

32.1 34.9

30.8 31.8

29.8 30.7

29.1 29.9

- September 1994

57.7 61.0

55.1 59.6

53.3 57.9

52.2 55.8

50.0 52.7

43.2

41.2

39.1

38.0

37.2

October,

43.4 44.8

41.I 44.6

39.6 42.6

38.1 38.8

36.6 36.6

1994- December 1994

35.9 37.3

34:8 ' 36.2

33.5 35.2

31.6 34.3

35.4

32.7

31.7

29.2

28.3 29.8 32.1

Table 3: Disk blocks moved for different cache replacement algorithms.
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Year

1992

1993

1994

Jan.-March April- June July - Sept. Oct.- Dec.

total unique total unique total unique totM unique
12806 73% 28899 61% 41296 67% 53253 65%

47046 66 31513 69 49058 65 26106 61

77415 62 92325 45 113594 55 74606 67

Table 4: Total and unique references (in percentage) to NDADS.

2.1 File Access Pattern Analysis

The success of caching depends on the access patterns. In this section we examine some

aspects of the access patterns.

The number of possible cache hits depends on the number of duplicate references in

the reference stream. In Table 4, we show the number of references and the number of

unique references by three month period. The 1994 data shows that the STWS and STbin

algorithm are getting close to the best possible hit rates.
The effectiveness of caching also depends on the average time between references to a

file (the inter-reference time). In Figure 1, we plot the distribution of inter-reference times

during 1994. To generate this plot, we scanned through all file accesses and searched for

repeat accesses. Whenever a repeated reference was found, we incremented a histogram

based on the number of days since the last reference. The plot shows that most repeat

references occur shortly after an initial access, but that the inter-reference time distribution

has a long tail. The average number of days between an access to a file, given that the file

is accessed at least twice in 1994, is 27.5 days. There is a sharp peak at 3 days that does

not fit well with the curve. We speculate that this is a side effect of the three-day residence

period (users re-submit their request when they find that the files have been removed from

disk storage area).
The effectiveness of STWS also depends on the distribution of file sizes. In Figure 2, we

plot the distribution of sizes of the files accessed in 1994. The average size of a file accessed

in 1994 is 560 Kbytes. Because of the wide range of sizes, we created the histogram by

binning on the base two logarithm of the file size. Most of the files accessed in this archive

are between 128 Kbytes and 1Mbyte in size. Few files larger than 2 Mbytes are accessed,

but this number does not go to zero. Figure 3 shows the file access rate weighted by the
file size. When we examine the number of bytes moved, files larger than 2 Mbytes account

for a significant fraction of the system activity.

Finally, we look at the rate at which files of different sizes are re-accessed. In Figure 4,

we plot the percentage of file accesses which are repeat accesses, binned on file size. This

plot shows that small files (except for the very smallest) have a low re-access rate, and

that the very large files have a high re-access rate. If the cost of transferring large files is

significant, then STWS is a distinctly suboptimal caching policy. Because STWS strongly

discriminates against very large files, it will often incur the cost of their transfer.

3 User Access Analysis

A model of request to the archive depends oll the users of the system. In the accumulated

log files, we have notices that the user population is growing. We first note that the user
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File inter-reference time

frequency
0.2

0.15

0.1

0.05

0
0 5 10 15 20 25 30 35 40 45 50 55

days between access

Figure 1: Distribution of file inter-reference times.

60+

Number of accesses vs, file size
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0
0 1 2 3 4 5 6 7 8 9 101112131415161718 19+

Log file size (In kilobytes)

Figure 2: Distribution of file sizes.
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Blocks accessed vs, file size

frequency
0.35

.3 ............................ m ...................................

0.25 .................................................................

,2 ................................................................

0.15 ............................

0,05

0
0 1 2 3 4 5 6 7 8 9 101112131415161718 19+

Log file size (in kilobytes)

Figure 3: Distribution of file sizes, weighted by number of blocks.

Probability of re-access vs. file size

frequency
1

0,8

0,6

0,4

0.2

0
0 1 2 3 4 5 6 7 8 9101112131415161718 19+

Log file size (in kilobytes)

Figure 4: Probability of re-referenceing a file, by file size.
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Number of users

year Jan. - March April- June July - Sept. Oct. - Dec.

1992 153 185 230 300

1993 430 552 677 607

1994 678 689 692 670

Table 5: Growth in the user population.

Number of requests per user in a month

frequency
0,5

1 2 3 4 5 6 7 8 9+

Number of user requests

Figure 5: Requests per user.

population is growing, as is indicated by Table 5.

Most users make only a few requests to the archive. Figure 5 plots a histogram of the

percentage of users that make different numbers of requests to the archive in a single month.

This plot also shows that there is a moderate size core of users who make make requests.

The top ten heaviest users make an average of 30 to 50 requests per month.

Finally, we plot the time between requests from a user in Figure 6. This plot shows that

user activity is very bursty, as more than 80% of repeat requests occur within 3 days of the

previous request.

We found that a large fi'action of repeat requests for a file are due to the user that

previously requested the file. The fraction of repeat request due to the same user is plotted

in Figure 7, binned on the number of days since the last reference.

4 Clustering

The efficiency of a tertiary storage system depends in large part on how well the data in

the archive is clustered with respect to the average request. The throughput of a drive in

the tertiary storage device is zero while new platters are being loaded, or while the drive is

seeking the file on the media. If the files of a single request are scattered throughout many

media, and at widely varying locations in the media, the throughput of the tertiary storage

device will be much lower than its potential.

The NDADS system is built over WORM storage, which has short seek times. Therefore,
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Figure 6: Time between repeat requests fi'om a user.
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Figure 7: Fraction of repeat accesses from the original user.
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Figure 8: Scatter plot of platters per request vs. files per request. The data is was collected

between July and September 1994.

the most expensive overhead occurs when a new platter has to be loaded to fetch a file.

Also, the 1994 log files contain the platter on which each file is stored, but not the tracks

on the platter.

Files in NDADS are divided into projects (i.e., the satellite tha_t generated the images

contained in the file). An optical platter contains files for only one project, (but a project

may be spread over many platters) to simplify the management of (he platters. This policy

actually aids in clustering, because all files in a request must be fr()m the same project.

If a project generates enough data to require several platters, the files are assigned to the

platters in a way that is hoped to reduce the number of platters that must be accessed to

satisfy a typical access. This method of placement depends on the project and the expected

type of access.

For every user request, we collected the number of files requested and the number of

platters needed to satisfy the request. We found that the NDADS clustering of files onto

platters is effective, as the average request asks for about 27 files, spread across about 2

platters. The number of platters required to satisfy a request is not correlated with the

number of files in the request. This property is illustrated in Figure 8, which is a scatter plot

of the number of platters to satisfy a request versus the number of files in the request. The

data in this plot is taken from the period July 1994 to September 1994, but is typical of the

total data. Most of the points in the plot are close to either the X or Y axis. The shape of

the plot indicates that the clustering is appropriate for most requests, but a small fraction

of the requests require a completely different clustering pattern (as is to be expected).

We also noted that some platters are accessed much more frequently than others. In

Figure 9, we plot the number of platters that have different numbers of references. The

plot shows that many of the platters receive only a few references, but that the distribution

has a long tail. Eighty four of the platters are very hot, serving more than 500 files during

1994. The hottest platter served 112646 files.
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Figure 9: Number of platters receiving different numbers of references.

5 System load

We computed the system load by summing up the number of seconds required to service all

request submitted during a period of time, then dividing by the number of seconds of the

observed period. We plot the system load per month for 1993, 1993, and 1994 in Figure 10.

While the month to month load shows great variability, the load per month does not follow

a pattern that is strongly adhered to in all three years of the observation. However, we can

note that there is a usage peak in March-April, another in July-August, and low demand

in January.
We next plot the system load per day of the week in Figure 11. Here, we can find a

strong trend, that people tend to submit requests on weekdays instead of weekends.

Finally, we plot the system load per hour of the day. We again see that people tend to

submit requests during normal working hours. The strong peak in load during (Greenbelt)

working hours also indicated that most users of NDADS work in the western hemisphere.

We note that a survey of the email addresses of user requests shows international use of

NDADS.

We have also recorded the system load due to ingest. Ingest contributes about .16 to the

system load, and shows a pattern that varies in time that is similar to that of file requests.

6 Conclusions

We have studied the access characteristics of the access requests to the National Data

Archive and Distribution Service (NDADS) of the National Space Science Data Center

(NSSDC), of NASA's Goddard Space Flight Center. Much of NASA's electronic science
data is available on through the NDADS archive. The log files present an opportunity to

understand the access patters of requests to scientific archives.
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Figure 10: Average load per month. 1 is January and 12 is December.
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Figure 11: Average load per day of the week. 1 is Sunday and 7 is Saturday.
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System load by hour
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We can make the following observations about the user request pattern:

• Caching can be effective. 59:4% of all files requested in 1994 had been requested

previously in 11994. ttigh hit rates (30% to 50%) can be achieved by using a space-

time working set algoritlnn.

- Many of the repeat requests are due to tile same user. The high proportion of

short-term repeat requests from the same user indicates some users are uncertain

of whether their request was received. The high proportion of long-term repeat

request from the same user indicates that NDADS is being used as a substitute

for local storage.

- While very large files constitute a small proportion of tile total number of re-

quests, they constitute a moderately large proportion of all bytes fetched from

tertiary storage. Very large files tend to have a high repeat access rate. These

two facts indicate that a caching algorithm should not discriminate too strongly

against large files.

- Access to a file is bursty. A large proportion of repeat accesses occur within 4

days of the previous access. The distribution of the time to the next access also

has a long tail. These two facts suggest that a model of file access rates should

have steady-state component and a bursty component triggered by an access.

• User request patterns tend to be very bursty. This fact combined with the high

proportion of repeat requests that are due to the same user explains some of the

bursty nature of file accesses.

• Access to NDADS tends to follow normal working hours. There is an increase of

activity preceding important scientific events.

379



• The user community grew rapidly during the first year of operation, then grew at a

slower pace during 1993 and 1994. The intensity of use by each user grew from 1993
to 1994.

* File access shows a great deal of clustering.

Most requests are satisfied by a few one or two platters. There is little correlation

between the number of files requested and the number of platters required to

service the request.

Clustering is important for performance. Although the average system ntilization

is low, the system load increases significantly during working hours and during

certain months. If the time required to service a request doubled, NDADS would

have difficulty in meeting peak demand.

Some data volumes are much more popular than others. During 1994, there were

84 very hot platters (i.e., served more than 500 files) and 28 very cold platters

(i.e., served 1-10 files).
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A trace driven simulation of the disk cache of a

mass storage system was used to evaluate the ef-

fect of an online compression algorithm on various

performance measures. Traces from the system at

NASA's Center for Computational Sciences were
used to run the simulation and disk cache hit ra-

tios, number of files and bytes migrating to ter-

tiary storage were measured. The measurements

were performed for both an LRU and a size based

migration algorithm. In addition to seeing the ef-

fect of online data compression on the disk cache

performance measure, the simulation provided in-

sight into the characteristics of the interactive ref-

erences, suggesting that hint based prefetching at-

gorithms are the only alternative for any future

improvements to the disk cache hit ratio.

I. Introduction

Mass storage systems are used in research envi-

ronments for storing data generated by scientific
simulations and satellite observations in amounts

on the order of terabytes. The cost of storage de-

vices of that capacity is still very high while the

rate of increase in disk space requirements by the

users grows continuously. This problem is espe-

cially evident in scientific research centers where

enormous amounts of data are generated on a daily

basis which must be archived so that they can be

analyzed at a later time [1], [2].

In this study the actual system under consider-

1Emaih odysseas@cs.umbc.edu
2Email: yeyesha_cs.umbc.edu

PRECEDING PA_ I_L,,_NK _ F]LMFD

ation is the Unitree Mass Storage System (UMSS)

used at NASA's Center for Computational Sci-

ences (NCCS). The system administrators are ex-

periencing a situation where they constantly need

to purchase additional storage devices which are

filled to capacity in a decreasing amount of time.

The main resource whose utilization must be op-

timized in this case is storage capacity. Re-

moving the redundancy in the data stored in

the file system, by inserting an online compres-

sion/decompression module, is one method of in-

creasing the effective capacity of the system with-

out the addition of expensive hardware devices.

After considering various alternative locations in

the system at which the compression algorithm

could be placed we determined that the user in-
terface would be the best choice. Some of the ad-

vantages of placing compression at the user inter-

face are: a) does not impose an additional load on

the storage servers CPU, b) reduces the amount of

data that flows through the network, and c) does

not require modifications to the Unitree code.

To evaluate the performance of compression on

the specific data stored at NCCS, the ftp clients

were modified to implement Ziv-Lempel and LZW

compression transparently [3], [4], [5]. Sequential

and pipelined implementations were tested against

two sets of files and the performance of each im-

plementation was compared based on file compres-

sion ratio and compression rate. An earlier paper

describes the implementations and the results in

detail [6].
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In this study we examine the effect of compres-

sion on the disk cache of the mass storage sys-
tem. A simulation is used to determine the effect

of compressing data on the hit-ratio of the disk

cache, the number of migrations of files from the

disk cache to robotic storage, and the total number

of bytes migrating to robotic storage. We also look

at two different migration algorithms and their ef-

fect on the hit ratio and the file migrations.

Section two gives a description of the system

under consideration and reviews terminology that

will be used throughout the rest of the paper. Sec-

tion three describes the simulation used in this

study. Section four describes the simulations per-

formed and analyzes the results. Section five con-

cludes the paper and discusses future work.

II. System Overview

The UMSS is a hierarchical mass storage man-

agement system which runs as a centralized ap-

plication program on top of the Unix operating

system and manages a hierarchical mass storage

file system. The specific installation offers three

levels in the storage hierarchy. Figure 1 shows the

typical storage pyramid provided by most hierar-

chical mass storage systems. At the higher level

it provides a disk array, with a total capacity of

150 GBs, which serves mainly as a cache for the

lower levels. The second level has a capacity of 4.8

terabytes provided by four near-line robotic tape

storage units. The third level is the off-line storage

vault which has the slowest transfer rate serving

as the long-term repository.

Users access files stored in the UMSS using the

ftp protocol from their local workstations via a

local area network. In addition to the ftp proto-

col, UMSS also provides an NFS interface to the

file system but due to performance and security

reasons the NFS protocol is not used by many in-

stallations including the one at NCCS. The UMSS

was designed in a modular fashion in order to

make possible its distribution over multiple host

machines. Figure 2 shows a block diagram of the

UMSS components [7].

Each of the components shown in figure 2 is rep-

resented by one or more independent daemon pro-

cesses and is responsible for certain tasks. The

"Name Server" resolves string file names used by

the users, into unique integer identifiers, used in-

ternally by all the other components of the UMSS.

The "Disk Server" keeps track of the files stored

in the disk cache, providing the view of a Unix

file system to the user. The "Disk Mover" is re-

sponsible for all transfers to and from the disk

cache. The "Migration Server" controls the migra-

tion of files from the disk cache to lower levels in

the disk hierarchy to ensure that the disk cache al-

ways has sufficient free space to operate efficiently.

The "Tape Server" keeps track of the files stored in

the tape storage units whether online or off-line.

The "Tape Mover" performs all file transfers to

and from a tape device. The physical device man-

ager is responsible for managing the tape mounts,

scheduling them in an order which maximizes the

utilization of the system resources. Finally, the

"Physical Volume Repository" is responsible for

mounting and dismounting both automated on-

line and off-line storage physical volumes [8]. Any

files retrieved from the UMSS are first placed ]n

the disk cache, if they are not already there, and

then are transferred to the user. Likewise, any files

stored into the UMSS are first stored in the disk

cache and then they are moved to a lower level of

the hierarchy through migration.

In an earlier paper we investigated the effec-

tiveness of an online data compression algorithm

placed at the user interface of a mass storage sys-

tem [6]. For a sequential implementation the fol-

lowing inequality describes the trade-off in time of

compressing the data online.

s s s(] -,-o)

i i I - r.

> + R---W
R_ < rcRc (i)

where S is the size of the file, R_ is the file trans-

fer rate, Rc is the compression rate and rc is the

compression ratio normalized to the range [0, 1].
The left hand side is the time it takes to transfer

the file without compression and the left side with

compression. If the compression rate of the com-

pression algorithm used is faster than the transfer

rate of the network between the client and the

server then the embedded compression increases

the effective capacity of the storage server at no
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additional cost. Note that by cost here wemean
the amount of time it takesto storea file into the
massstoragesystem. If this inequality doesnot
hold, the online compressionalgorithm increases
the effective capacity of the system at the ex-
penseof added time when storing the file. The
aboveinequality appliesonly to the sequentialim-
plementation. Assumingthat the communication
time between the parent and child processesis
negligible we can derive a similar relation for the
pipelined implementationasshownin inequality 2.

s s s(1-rc)}n-S > max( , R, (2)

The total time of the pipeline is bounded by the

maximum of each of its components. Which of

the two components prevails will depend on the

particular client making the request and on the

network topology. If the client is connected locally
relative to the server but is a slow machine then

the compression component will prevail whereas

on a fast machine which is a few hops from the

server the transmission component will prevail.

III. Disi_ Cache Simulation

A trace-driven simulation of the disk cache was

used to ascertain the effect on the hit ratio and on

the migration of files caused by file compression

and migration algorithm. A discrete event simu-

lator was developed using the ftp request traces to
drive the simulation. The disk cache size was var-

ied from 150GB, which is the actual disk cache size

at the NCCS site, to 250GB. Initially the cache

was assumed to be empty. The disk cache was

represented by a doubly linked list of structures

which described each file entry. The information

stored for each file were a unique file identifier, the

file size, a timestamp of the time the file entered

the disk cache, and an indicator of whether the file

is stored in the disk cache or in the lower levels of

the hierarchy.

Put requests were placed in the disk cache. If

the file already resided in the cache or lower in

the hierarchy the operation was processed as an

update, ensuring that only one copy of the file

existed in the entire mass storage system. For get

requests, if the file existed in the disk cache then

the request was considered a hit. If the file existed

lower in the hierarchy it was staged in the disk

cache. If the file requested did not exist in the

hierarchy, it was processed as if it was in the lower

levels of the hierarchy and a new entry was created

for the file in the disk cache.

Migration in simulated time was performed us-

ing a high water mark as in the UCFM. If the

amount of free space in the cache went below the

high water mark of 75% the total disk cache ca-

pacity, files were migrated to the lower levels of

the hierarchy to create more space. Two different

migration algorithms were tested. The first one,

was LRU based, selecting files to migrate which

had resided in the cache the longest without be-

ing referenced. The second algorithm was based

on the file size, migrating larger files first.

Since it would be impractical to collect the com-

pression ratios for each of the files in the mass stor-

age system each simulation run used a fixed com-

pression ratio. The simulation was run for various

compression ratios ranging from 0% to 60% com-

pression.

IV. RESULTS

The ftp interactive request logs for a period of
three months were used to run the simulation. The

total number of references in that three month pe-

riod was approximately 106,000. The references

from the first two months were used for bringing

the disk cache to a warm state. Then the number

of hits, the hit ratio, the number of files migrating

to tertiary storage, and the total number of bytes

migrated were measured for fixed values of com-

pression ratio. The simulation was run also for

two different migration algorithms. The first mi-

gration algorithm, which selected files to migrate

if they had resided on the disk cache the longest

without being referenced, will be referred to as

the LRU based algorithm. The second algorithm

which selected files to migrate based on their file

size will be referred to as the Size based algorithm.

The hit ratio was computed as the number of hits

per day over the number of get requests on that

specific day.

One important observation that was made about

the reference patterns used in this mass storage

system was that the requests do not exhibit sig-

nificant temporal locality. Users do not tend to
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re-usetheir files very frequently as in a typical file
system. This implies that this specificmassstor-
age system is used more as an archive than as a
typical file system. Since the working set of the
get requeststream continuouslychanges,only low
hit ratios are possible regardlessof size increases
to the disk cache.

In order to be able to comparethe hit ratios
measuredwith somesort of an optimal hit ratio
we run the simulation on the sametrace data set-
ting the compressionratio to a valuevery closeto
zero. This allowedall the filesto fit within the disk
cache,imitating a disk cacheof an enormoussize,
generating no migrations. This experiment was
used to generate the optimal (OPT) disk cache
hit ratios. The samemethod wasused to com-
pute the hit ratio of this cacheas in the other
cases.Table I summarizesthe effectof compres-
sion on the number of hits for eachof the exper-
iments. The table is divided in three major col-
umn groupsfor eachof the migration algorithms.
The first column group showsthe results for the
LRU basedmigration algorithm, the secondcol-
umngroup for the Sizebasedmigration algorithm,
and the last column showsthe resultsfor the OPT
disk cache. The first two column groups consist
of three columns, one for each of three different
compressionratios attempted. Comparingthe re-
suits from the two migration algorithms against
the results under OPT we seethat the numberof
hits for both algorithms are very closeto the op-
timal. Compressiondoes not affect the hit ratio
very much and this is becausethe disk cacheis
large enough to support the hits in the reference
patterns. It should be noted that the LRU based
algorithm exhibits the inclusion property as ex-
pected since the number of hits is non-decreasing
with increasesin the disk cachesize. On the other
hand, the sizebasedalgorithm in certain casesde-
creaseswith a larger effectivedisk cachesize.

gorithm. The variation in compressionratio does
not haves_gnificanteffecton the hit ratio and the
reasonfor this is the sameas discussedin the pre-
vious paragraph. This implies that adding addi-
tional disks to the disk cachewill not have any
effecton the hit ratio basedon the referencesan-
alyzed. Also any further effort in improving the
hit ratio by varying the migration algorithm will
not generateany significant improvement on the
hit ratio. The only possible method of increas-
ing the hit ratio would be to developa prefetching
algorithm that is basedon hints provided by the
user.

The secondpart of the simulation analysis fo-
cusedon the migrations. Sincemigration involves
the useof tape drives from the robotic silos it is
anexpensiveoperation. Thus, reducing the num-
berof migrationsor the total number of bytes mi-
grating to the tape will improve the massstorage
system'sperformance.Figure 4 showsthe number
of filesmigrating versuscompressionratio for the
two migration algorithms. The LRU basedalgo-
rithm maintainsaconsistentnumberof migrations
andtendsto smooth the migration operationsover
time. It appears that the effect of file compres-
sion is minimal. Looking at the peaksin the LRU

based algorithm it appears that compression sim-

ply shifts the migration effects but does not reduce

their number. The size based migration algorithm

decreases significantly the number of migrations

but it has the negative effect of generating on cer-

tain days tremendous migration traffic. Analyz-

ing the file sizes for both get and put requests
we found that the mean file size of files stored in

the storage system is an order of magnitude larger
than the mean file size of files retrieved. Since

the size based algorithm removes larger files first,

eventually it runs out of large files and it has to

remove a huge number of small files to free space

in the disk cache.

The hit ratios were also plotted in figure 3 for

various compression ratios. The plot on the top

shows the hit ratio variation with respect to the

compression ratio for the size based migration al-

gorithm and the bottom plot shows the variation

for the LRU based migration algorithm. It is ap-

parent from these figures that size based migration

Figure 5 shows the number of bytes migrating

to robotic storage for various compression ratios.

It is apparent that for both migration algorithms

the higher compression ratio provides significant
reduction in the number of bytes that need to mi-

grate. The size based migration algorithm pro-

vides better performance throughout the simula-

provides higher hit ratios than the LRU based al- tion period. The time it takes the system to pro-
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TABLE I

Number of Cache Hits over Compression Ratio

LRU Based Size Based

rc 0.0 I 0.2 0.4 0.0 0.2 0.4 OPT
1 285 285 286 285 286 286 286

2 87 87 87 104 104 104 105

3 186 186 186 186 186 186 202

4 342 342 342 343 343 343 352

5 235 241 242 435 435 435 493

6 1086 1087 1088 1089 1088 1087 1130

7 1323 1323 1323 1500 1500 1500 1698

8 143 143 143 145 145 145 153

9 60 60 60 63 63 61 63

10 250 250 250 248 248 248 252

11 321 321 321 317 317 318 324

12 422 422 422 434 434 434 464

13 371 371 371 354 355 355 409

14 376 381 381 376 376 377 436
9 _15 1249 1249 1251 1244 1243 1244 1_o6

cess a migration involves an overhead time and a
data transfer time. The overhead time consists of

mounting the tape on a tape drive, a seek time to

place the tape drive heads at the proper location, a
rewind time after the data have been written, and

an unmount time. Reducing the number of migra-

tions from the disk cache affects the overhead time

while reducing the number of bytes migrating to

robotic storage reduces the data transfer time.

V. Conclusion

We evaluated the performance of an online com-

pression algorithm on the disk cache of a mass

storage system. A trace driven simulation of the
disk cache was used for the evaluation. The traces

used to drive the simulator were collected from the

ftp logs of the system. The simulation was config-
ured to match the disk space and migration algo-

rithm of the system at NCCS. The effect of com-

pression was simulated by uniformly reducing the

file size of the get and put requests. Various com-

pression ratios were used in the simulation. The
simulation also evaluated two different migration

algorithms, specifically an LRU based and a size

based algorithm.

the references at this mass storage system was that

the working set continuously changes. This hn-

plies that the disk cache hit ratio cannot be im-

proved significantly by increasing the disk cache

size since get operations are usually to files that

were stored in the mass storage system a very

long time in the past,. This effect was evident by

comparing the two migration algorithms against
a disk cache which was large enough to store all

files stored during the three month evaluation pe-

riod. As a result both algorithms attained hit ra-

tios very close to the optimal hit ratios of the huge

cache. Comparing the two migration algorithms

we found that the size based algorithm decreases

the total number of bytes migrating to tertiary

storage at the expense of causing occasional peaks
in the number of files migrating. Both algorithms

were not affected by the compression ratio due to

the fact that the disk cache is of large enough size

to cover the intereference pattern of the requests.

Future work will focus on evaluating various

prefetching algorithms. The current simulation

suggested that only the use of user hints and an

appropriate prefetching algorithm can improve the
hit ratio of this system. The use of transparent

One important observation that was made about _ iniormed prefetching could be applied to improve
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the hit ratio of the disk cacheby exploiting ap-
plication level hints about future file accesses[9].
Another areaof future researchis the implementa-
tion and evaluation of migration algorithmsbased
on a combination of file sizeand cacheresidency
time as described in [10], [11]. This simulation
analysisshowedthat sizebasedmigration reduces
the number of bytes that migrate to tertiary stor-
agebut occasionallyit producesa largenumberof
migration loads. By using a migration algorithm
basedon the spacetime product we expect that
the migration peaks will disappear, while main-
raining the lower number of bytesmigrating.
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Fig. 1. Hierarchical Storage Pyramid

Fig. 2. UMSS Block Diagram
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A Terabyte Linear Tape Recorder

John C. Webber
Interferometrics Inc.

8150 Leesburg Pike
Vienna, VA 22182

(703) 790-8500
webber@interf.com

N95- 24139 i

A plan has been formulated and selected for a NASA Phase II SBIR award for
using the VLBA tape recorder for recording general data. The VLBA tape recorder is a
high-speed, high-density linear tape recorder developed for Very Long Baseline
Interferometry (VLBI) which is presently capable of recording at rates up to 2 Gbit/sec and
holding up to 1 Terabyte of data on one tape, using a special interface and not employing
error correction. A general-purpose interface and error correction will be added so that the
recorder can be used in other high-speed, high-capacity applications.

The VLBA recorder was developed specifically for recording VLBI data using the

Very Long Baseline Array of radio astronomy antennas built by the National Radio
Astronomy Observatory. It is an evolution of the technology developed for the NASA
Mark Ilia VLBI recording system at MIT Haystack Observatory. Its characteristics may
be summarized as follows:

Recording medium:

Head type:
Bit density:
Format:

Tape speed:
MTBF:
Head life:

Head replacement cost:
Maintenance:

1-inch-wide Dl-equivalent 16 m thick tape
38 _m width, single-crystal ferrite
56,000 flux transitions per inch
continuous linear tracks, NRZM, magnetic saturation

For 9 Mbit/sec data, 160 inches per second

10,000 hours typical
5,000-20,000 hours depending on environment
$1/hour
headstack and tape path cleaned with a cotton swab
at each tape change.

A single headstack writes and reads 34 data tracks at a time. The heads are 38 I.tm
wide and are separated by 698.5 I.tm, so that potentially 698.5/38 = 18.38 passes could be
written on the tape. However, some allowance for guard bands between tracks must be
made, since the magnetic gap is exactly perpendicular to the direction of tape motion and
there must be no crosstalk between tracks. A practical limit is 16 passes, which gives a

track spacing of 43.7 I.tm with a guard band of about 5 I.tm. There are thus 544 data tracks
on the tape. Future improvements in tapes and heads are expected to increase this number.

The tape is a D1- or S-VHS equivalent tape available from both 3M and Sony. This

tape is 16 m thick, and 20,500 usable feet are contained on a 16-inch reel (only 14-inch
reels are currently used). The bit density supportable on this tape is 60,000 bits per inch,
so each track contains 14.4 Gigabits. The whole tape with 544 tracks then holds about
8.03 Terabits, or one Terabyte. Using the error-correcting format to be developed, this
becomes 788 Gbytes of user data. The cost of one reel of this tape is presently about
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$1500, or $1.90 per Gigabyte. At the maximum user data rate supported by one
headstack,namely69.44Mbyte/sec,onetapelastsapproximately192minutes. Up to 4
headstacksmaybemountedononetransport,yielding anaggregaterecordingrateof 278
Mbyte/secwith arecordingtimeof 48minutes.This isalsothetimerequiredto duplicatea
tape.

Typical tapelife is severalhundredread-writecyclesincluding shippingonceper
monthin uncontrolledconditions.

INTERFACES

The data interface in the present VLBA recorder is a set of parallel data lines, each
supplying data directly to a single head in the headstack. Formatting of the user data
consists of adding synchronization words, time codes, identification data, and parity bits in
an external formatter. These bits are simply transferred directly to tape. On playback, the
signals from each head are amplified, equalized, and routed to bit synchronizers which
recover the clocks from each data stream. All further processing is performed in an
external unit which recovers the synchronization codes, de-skews the tracks, and combines
the data into a desired format.

In the system under development, the recorder will be responsible for all functions
of formatting and deformatting. The user will supply data over a standard interface and
recover data from the recorder over the same interface.

For the data rates of concern, there is a prime "standard" interface, namely the
High-Performance Parallel Interface, or HIPPI, defined in ANSI X3.183-1991, as defined

by the ANSI Task Group X3T9.3. We have adopted this interface as the standard recorder
data interface for both record and playback for all applications. The HIPPI channel
consists of 32 balanced ECL signals with a common 25 MHz clock and a transfer protocol
allowing bursty transmissions. For applications requiring less than the full channel

capacity, the recording speed may be varied or the data padded with dummy data to be
stripped at playback time.

The HIPPI channel is a one-way device, so two HIPPI channels are needed in

order to accommodate both record and playback functions. Commercially available chips
provide a single 100 Mbyte/sec HIPPI interface. In the prototype system, two headstacks
will be employed, enabling a maximum of 138.88 Mbyte/sec to be recorded. Since the
recorder speed can be set with very fine resolution, it will be chosen such that the bit
density remains at 60,000 bits per inch.

Since other high-speed protocols and fiber optic interfaces such as advanced ATM
are coming into use, it is essential that the recorder be expandable to accommodate them.

The plan is to add, for example, an ATM-to-HIPPI interface and continue to operate the
recorder exclusively from the HIPPI interface. This simplifies the interfacing problem by
placing it outside the recorder proper.

A single low-speed interface will suffice to set the recording mode and control the
playback process. This is envisioned to be a 9600 baud RS-232C interface, permitting
operation by any computer.
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ERROR CORRECTION

For an individual tape track, which is the minimal recording sub-channel, the
important characteristics for the VLBA recorder as it is presently used are as follows:

Random errors:

Burst errors:

Bit Error Rate (BER) < 3 x 10 -4 with 10-year-old tape;

typically 3 x 10-6 with new tape, 3 x 10 -5 with 3-year-old tape

Typical length 100-1000 bits; typical rate 1 burst in 107 bits;
bursts usually cause loss of bit synchronization

Random errors are caused by low signal-to-noise ratio (SNR), imperfect

equalization, and imperfect bit synchronization. Burst errors are caused primarily by tape
defects and are consequently highly dependent on the particular tape in use; any system of
error correction must accommodate the worst-case tape. In order to minimize the data lost

to dropouts, the distance between sync words should be comparable to the size of the

dropouts.

For typical imaging data, a bit error rate better than 1 x 10 -9 is required. Other

applications require bit error rates as low as 1 x 10 -13.

Recently, VLSI chip sets which implement Reed-Solomon error correction
algorithms have become available, and some can run at the data rates in which we are
interested. Such chips are available from such manufacturers as LSI Logic and CNR, Inc.

It appears that suitable devices for this application are available from Advanced Hardware
Architectures (AHA). In particular, the AHA4010 device is attractive because of the

following:

Input data format:
Data rate:

Max block length:
Max errors correctable:
Other features:
Cost:

8-bit parallel (byte organization)
10 Mbyte/sec (80 Mbit/sec)
255 bytes (programmable)
10 per block (or 20 erasures)

No external buffers or control required

$30 each in large quantities

Data will first be coded into data blocks of length 235 bytes. For each such block,
we will program the AHA4010 to add 20 error correction bytes to make the tota! block

length 255. This is an overhead of 8.5%.

This scheme will permit correction of up to 10 errors or 20 erasures (or a linear

combination of both). Even with a raw bit error rate of 1 x 10 "4, the corrected code block

error rate is predicted to be 7 x 10 -15, which satisfies our requirements. The errors will be
decorrelated by interleaving the data over a distance long enough so that only one or two
bytes from each code block are contained within a single error burst.

CONFIGURATION

The VLBA recorder uses a Metrum Model 96 tape transport, which is a full-size
rack of hardware. In the new configuration, it will contain:

VME-based control computer
HIPPI interfaces with buffers

Error correction/formatting boards
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Analog write drivers
Analog playback amplifiers/equalizers
Clock recovery (bit sync) boards
Deskewing buffers
Transport and headstack motion controllers
Power supplies

The prototype system will be equipped with two headstacks and so will be capable
of recording up to about 138 Mbyte/sec of user data.

RECORDING AND PLAYBACK PROCESS

In addition to error correction, some formatting must be introduced in the form of
synchronization words, modulation, and longitudinal parity. Sync words are absolute
identifiers of tape block start points. Data modulation by a pseudo-random sequence will
guarantee roughly equal numbers of ones and zeroes in the data regardless of content. The
addition of longitudinal parity bits on each track will force sufficient transitions in the
NRZM format so that good bit synchronizer performance can be maintained.

Upon playback, the parity, modulation, sync, and other formatting information
must be undone and stripped out, and the error correction bytes used to restore the original
user data. This data must then be reformatted so that it can be transmitted over the HIPPI

interface back to the user. A summary of the recording and playback process is shown as
Figure 1.

!
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Figure 1. Data flow to and from the recorder

In much of the recording and playback electronics, the same circuitry can be used to
perform both the recording and playback processing.

396



REFERENCES

"A High Data Rate Recorder for Astronomy", H. F. Hinteregger, A. E. E. Rogers, R. J.

Cappallo, J. C. Webber, W. T. Petrachenko, and H. Allen, IEEE Transactions on
Magnetics, 27, No. 3, p.3455 (1991).

"Very Long Baseline Radio Interferometry: The Mark III System for Geodesy,
Astrometry, and Aperture Synthesis", A. E. E. Rogers et al., Science, 219, p.51 (1983).

397




